References

[1]
[2]
Laboratory of signals and systems L2S Paris-Saclay University. Retrieved July 29, 2021 from https://l2s.centralesupelec.fr/
[3]
Viral Shah al Stefan Karpinski. Announcing the release of Julia 1.0. Retrieved August 17, 2021 from https://julialang.org/blog/2018/08/one-point-zero/
[4]
Rand Asswad, Ugo Boscain, Giuseppina Turco, Dario Prandi, and Ludovic Sacchelli. 2021. An Auditory Cortex Model for Sound Processing. 56–64. DOI:https://doi.org/10.1007/978-3-030-80209-7_7
[5]
Marcelo Bertalmío, Luca Calatroni, Valentina Franceschi, Benedetta Franceschiello, and Dario Prandi. 2018. A cortical-inspired model for orientation-dependent contrast perception: A link with Wilson-Cowan equations. arXiv:1812.07425 [cs] (December 2018). Retrieved November 12, 2020 from http://arxiv.org/abs/1812.07425
[6]
Ugo Boscain, Roman Chertovskih, Jean-Paul Gauthier, Dario Prandi, and Alexey Remizov. 2017. Cortical-inspired image reconstruction via sub-Riemannian geometry and hypoelliptic diffusion. In SMAI 2017 - 8e Biennale Française des Mathématiques Appliquées et Industrielles, La Tremblade, France, 37–53. DOI:https://doi.org/10.1051/proc/201864037
[7]
Ugo Boscain, Dario Prandi, Ludovic Sacchelli, and Giuseppina Turco. 2021. A bio-inspired geometric model for sound reconstruction. The Journal of Mathematical Neuroscience 11, 1 (January 2021), 2. DOI:https://doi.org/10.1186/s13408-020-00099-4
[8]
Paul C. Bressloff and Jack D. Cowan. 2002. An Amplitude Equation Approach to Contextual Effects in Visual Cortex. Neural Computation 14, 3 (March 2002), 493–525. DOI:https://doi.org/10.1162/089976602317250870
[9]
Paul C. Bressloff, Jack D. Cowan, Martin Golubitsky, Peter J. Thomas, and Matthew C. Wiener. 2002. What Geometric Visual Hallucinations Tell Us about the Visual Cortex. Neural Computation 14, 3 (March 2002), 473–491. DOI:https://doi.org/10.1162/089976602317250861
[10]
G. Citti and A. Sarti. 2006. A Cortical Based Model of Perceptual Completion in the Roto-Translation Space. Journal of Mathematical Imaging and Vision 24, 3 (May 2006), 307–326. DOI:https://doi.org/10.1007/s10851-005-3630-2
[11]
Wikimedia Commons. 2013. Resolution difference between the Short-Time Fourier Transform and the Wavelet Transform. Retrieved September 9, 2021 from https://commons.wikimedia.org/wiki/File:STFT_and_WT.jpg
[12]
P. Dallos. 1996. Overview: Cochlear Neurobiology: Springer Handbook of Auditory Research. The Cochlea: Springer Handbook of Auditory Research (1996), 1–43. Retrieved August 13, 2021 from https://www.scholars.northwestern.edu/en/publications/overview-cochlear-neurobiology-springer-handbook-of-auditory-rese
[13]
G. B. Ermentrout and J. D. Cowan. 1979. A mathematical theory of visual hallucination patterns. Biological Cybernetics 34, 3 (October 1979), 137–150. DOI:https://doi.org/10.1007/BF00336965
[14]
D. Griffin and Jae S. Lim. 1983. Signal estimation from modified short-time Fourier transform. undefined (1983). Retrieved September 3, 2021 from https://www.semanticscholar.org/paper/Signal-estimation-from-modified-short-time-Fourier-Griffin-Lim/14bc876fae55faf5669beb01667a4f3bd324a4f1
[15]
Karlheinz Gröchenig. 2001. Foundations of Time-Frequency Analysis. Birkhäuser Basel. DOI:https://doi.org/10.1007/978-1-4612-0003-1
[16]
Gerhard Heinzel, Albrecht Rüdiger, and Roland Schilling. 2002. Spectrum and spectral density estimation by the Discrete Fourier transform (DFT), including a comprehensive list of window functions and some new at-top windows. (2002). Retrieved September 9, 2021 from https://pure.mpg.de/pubman/faces/ViewItemOverviewPage.jsp?itemId=item_152164
[17]
William C. Hoffman. 1989. The visual cortex is a contact bundle. Applied Mathematics and Computation 32, 2 (August 1989), 137–167. DOI:https://doi.org/10.1016/0096-3003(89)90091-X
[18]
D. H. Hubel and T. N. Wiesel. 1959. Receptive fields of single neurones in the cat’s striate cortex. The Journal of Physiology 148, 3 (1959), 574–591. DOI:https://doi.org/10.1113/jphysiol.1959.sp006308
[19]
Alex Loebel, Israel Nelken, and Misha Tsodyks. 2007. Processing of sounds by population spikes in a model of primary auditory cortex. Frontiers in Neuroscience 1, 1 (November 2007), 197–209. DOI:https://doi.org/10.3389/neuro.01.1.1.015.2007
[20]
S. Mann and S. Haykin. 1992. ’Chirplets’ and ’warblets’: Novel time-frequency methods. Electronics Letters 28, (January 1992), 114. DOI:https://doi.org/10.1049/el:19920070
[21]
Meinard Müller. 2015. Fundamentals of Music Processing - Audio, Analysis, Algorithms, Applications. Springer. Retrieved from https://www.audiolabs-erlangen.de/fau/professor/mueller/bookFMP
[22]
Jean Petitot and Yannick Tondut. 1999. Vers une neurogéométrie. Fibrations corticales, structures de contact et contours subjectifs modaux. Mathématiques et Sciences Humaines 145, (1999), 5–101. Retrieved August 13, 2021 from https://eudml.org/doc/94522
[23]
James Rankin, Elyse Sussman, and John Rinzel. 2015. Neuromechanistic Model of Auditory Bistability. PLoS computational biology 11, 11 (November 2015), e1004555. DOI:https://doi.org/10.1371/journal.pcbi.1004555
[24]
Hans Martin Reimann. 2011. Signal processing in the cochlea: The structure equations. The Journal of Mathematical Neuroscience 1, 1 (June 2011), 5. DOI:https://doi.org/10.1186/2190-8567-1-5
[25]
Curtis Roads. 2002. Microsound. (March 2002). DOI:https://doi.org/10.7551/mitpress/4601.001.0001
[26]
Debashis Sen. 2014. The uncertainty relations in quantum mechanics. Current science 107, (July 2014), 203–218. DOI:https://doi.org/10.13140/2.1.5183.0406
[27]
Hugh R. Wilson and Jack D. Cowan. 1972. Excitatory and Inhibitory Interactions in Localized Populations of Model Neurons. Biophysical Journal 12, 1 (January 1972), 1–24. DOI:https://doi.org/10.1016/S0006-3495(72)86068-5
[28]
Xiaowei Yang, Kuansan Wang, and Shihab Shamma. 1992. Auditory representations of acoustic signals. Information Theory, IEEE Transactions on 38, (April 1992), 824–839. DOI:https://doi.org/10.1109/18.119739
[29]
Isma Zulfiqar, Michelle Moerel, and Elia Formisano. 2019. Spectro-Temporal Processing in a Two-Stream Computational Model of Auditory Cortex. Frontiers in Computational Neuroscience 13, (2019), 95. DOI:https://doi.org/10.3389/fncom.2019.00095