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1 Introduction

1.1 Laboratory and supervision

The Laboratory of Signals and Systems (L2S) is a French research laboratory created in 1974,
operated by the CNRS, CentraleSupélec and the University of Paris-Saclay.
Research at L2S is conducted in fundamental and applied mathematics, divided into three main
fields: Systems and Control, Signal processing and Statistics, and Networks and Telecommunica-
tions.
My supervisor Dario Prandi, is a member of the COMEDY team which focuses on analysis of
structural properties and control of classes of dynamical systems. The main focus is on fundamental
results, but with a strong link to applications [2].
Dario Prandi has been working on a bio-inspired model for sound reconstruction, along with
Ugo Boscain, Ludovic Sacchelli, and Giuseppina Turco. Ugo Boscain (CNRS, Inria, Laboratoire
Jacques-Louis Lions, Sorbonne Université) has supervised me closely along with Dario Prandi.
As the intership took place during the COVID-19 pandemic outbreak, I worked from home. An
open channel on Microsoft Teams allowed us to communicate whenever it was needed. Moreover,
a visio-conference call was scheduled to discuss the established work and the following tasks. In
addition, whenever we had the chance, an in-person meeting was organized allowing a prolonged
discussion of the on-going work.

1.2 Internship mission

The goal of the internship is to carry out the work that had been started on the sound reconstruction
model, which needed at that point numerical and theoretical validation.
Preliminary tests were carried out on synthetic sounds, giving promising results. Nevertheless,
tests on real speech signals were needed as the model was conceived for that purpose. The course
of the internship would be decided depending on the numerical validation. As it turned out, a new
mathematical approach was needed in order to improve the model.
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2 Image reconstruction model

The geometric model for sound reconstruction was inspired by a sub-Riemannian model of the
visual cortex V1 for image reconstruction. Therefore, a preliminary study of the image recon-
struction was needed in order to understand the sound model and the challenges that are faced in
adapting the initial model for sound reconstruction.

2.1 Neoro-geometric model of V1

My supervisors and their colleagues have presented a cortical-inspired image reconstruction algo-
rithm [5,6] based on the Citti-Petitot-Sarti (CPS) model of the human primary visual cortex V1
[10,22].
The CPS model is based on the work of Hubel and Wiesel [18] who observed that there are groups
of neurons sensitive to positions and directions. This has inspired Hoffman [17] to model V1 as a
contact space (a three-dimensional manifold endowed with a smooth map). Since an image can be
seen as a function f : R2 → R+ representing the grey level at given coordinates, the visual cortex
adds the angle θ ∈ P 1 of the tangent line to the curve, where P 1 = R/πZ is the projective line of
non-directed angles. The model therefore lifts the image into R2 × P 1.

2.2 Wilson-Cowan model in V1

The Wilson-Cowan (WC) model [27] describes the evolution of neural activations, more precisely,
it describes the evolution of excitatory and inhibitory activity in a synaptically coupled neuronal
network.
The interaction between the hypercolumns in V1 can be described through the WC equations [8].
An integro-differential equation describing the state a(x, θ, t) of a population of neurons with V1
coordinates x ∈ R2 and orientation θ ∈ P 1 at time t > 0 [5].

∂

∂t
a(x, θ, t) = −αa(x, θ, t) + ν

∫
R2×P 1

ω(x, θ∥x′, θ′)σ(a(x′, θ′, t))dx′dθ′ + h(x, θ, t) (1)

original corrupted reconstructed

Figure 1: Reconstruction of a 97% corrupted image
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3 Sound reconstruction model

3.1 From V1 to A1

The motivation behind the application of the model in sound reconstruction is the idea that a
sound can be seen as an image in the time-frequency domain. The primary auditory cortex A1
receives the sensory input directly from the cochlea [12], which is a spiral-shaped fluid-filled cavity
that composes the inner ear.
The mechanical vibrations along the basilar membrane are transduced into electrical activity along
a dense, topographically ordered, array of auditory-nerve fibers which convey these electrical po-
tentials to the central auditory system.
Since these auditory-nerve fibers (sensors or inner hair cells) are topographically ordered along the
cochlea spiral, different regions of the cochlea are sensitive to different frequencies. Hair cells close
to the base are more sensitive to low-frequency sounds and those near the apex are more sensitive
to high-frequency sounds [28].

Figure 2: Perceived pitch of a sound depends on the location in the cochlea that the sound wave
stimulated [7].

This spatial segregation of frequency sensitivity in the cochlea means that the primary auditory
cortex receives a time-frequency representation of the sound. In this model, we consider the Short-
Time Fourier Transform (STFT) as the time-frequency representation S(τ, ω) of a sound signal
s ∈ L2(R)
While the spectrogram of a sound signal |S| (τ, ω) is an image, the image reconstruction algo-
rithm cannot be applied to a corrupted sound since the rotated spectrogram would correspond to
completely different input sound therefore the invariance by rototranslation is lost. Moreover, the
image reconstruction would evolve the WC equation on the entire image simultaneously. However,
the sound image (spectrogram) does not reach the auditory cortex simultaneously but sequentially.
Hence, the reconstruction can be performed only in a sliding window [7].

3.2 Sound reconstruction pipeline

As discussed in the previous section, the sound reconstruction model is inspired by the V1 model.
First, a 2-dimensional image of the sound signal is obtained via a short-time Fourier transform,
which is analogous to the spectrogram the cochlea transmits to the auditory cortex. The time
derivative of the frequency ν = dω/dτ , corresponding to the chirpiness of the sound, allows adding
a new dimension to the sound image. Afterwards, the sound image is lifted into an augmented
space that is R3 with the Heisenberg group structure. Henceforth, the sound is processed in its 3D
representation, that is the obtained lift L(τ, ω, ν).
Similarly to the V1 model, the sound is reconstructed by solving the Wilson-Cowan integro-
differential equation.
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Finally, the solution to the Wilson-Cowan equations is projected into the time-frequency represen-
tation which gives a sound signal through an inverse short-time Fourier transform [7].

Figure 3: Sound reconstruction pipeline

3.3 Time-Frequency representation

The Fourier transform transforms a time signal s ∈ L2(R) into a complex function of frequency
ŝ ∈ L2(R). Since the time signal s can be obtained from ŝ using the Inverse Fourier Transform, they
both contain the exact same information. Conceptually, s and ŝ can be considered two equivalent
representations of the same object s, but each one makes visible different features of s.
A time-frequency representation would combine the features of both s and ŝ into a single function.
Such representation provides an instantaneous frequency spectrum of the signal at any given time
[15].

3.3.1 The Short-Time Fourier Transform

The Short-Time Fourier Transform (STFT) is a very common Time-Frequency representation of a
signal. The principle of the STFT is quite straightforward. In order to obtain a Time-Frequency
representation of a signal s, a Fourier transform is taken over a restricted interval of the original
signal sequentially. Since a sharp cut-off introduces discontinuities and aliasing issues, a smooth
cut-off is prefered [15]. This is established by multiplying a segment of the signal by a weight
function, that is smooth, compactly supported, and centered around 0, referred to as window.
Essentially, the STFT S(τ, ω) is the Fourier transform of s(t)w(t − τ) (the signal taken over a
sliding window along the time axis.)

S(τ, ω) =
∫
R
s(t)w(t− τ)e−2πiωtdt (2)

Figure 4: Signal windowing for the STFT [15]
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3.3.2 Time and frequency shifts operators

In our study, we consider realizable signals s ∈ L2(R). Fundamental operators in time-frequency
analysis are time and phase shifts acting on realizable signals s ∈ L2(R).

• Time shift operator: Tτs(t) = s(t− τ)
• Phase shift operator: Mωs(t) = e2πiωts(t)

We notice that the STFT can be formulated using these unitary operators

S(τ, ω) =
∫
R
s(t)w(t− τ)e−2πiωtdt (3)

=
∫
R
s(t)MωTτw(t)dt (4)

= ⟨s,MωTτw⟩L2(R) (5)

We can redefine the STFT as an operator Vw on s ∈ L2(R) defined in function of Tτ and Mω [7,15].

Vws(τ, ω) = ⟨s,MωTτw⟩L2(R) (6)

3.3.3 Discrete STFT

Similarly to the continuous STFT, the discrete STFT is the Discrete Fourier Transform (DFT) of
the signal over a sliding window. Nevertheless, the window cannot slide continuously along the
time axis, instead the signal is windowed at different frames with an overlap. The window therefore
hops along the time axis.
Let N be the window size (DFT size), we define the overlap R as the number of overlapping
frames between two consecutive windows. The hop size is therefore defined as H = N − R. We
also define the overlap ratio as the ratio of the overlap with respect to the window size r = R/N
where r ∈ [0, 1[.
The discrete STFT of a signal s ∈ L2([0, T ]) is therefore

S[m,ω] =
T∑
t=0

s[t]w[t−mH]e−2πiωt (7)

The choice of parameters has direct influence over the discrete STFT resolution, as well as its
invertibility.

3.3.4 STFT windowing

The choice of the window affects quality of the Fourier transform. One should choose a window
with anti-aliasing and that distributes spectral leakage.
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(a) Rectangular window

(b) Triangular window

(c) Hann window

Figure 5: Different windows (left) and their respective Fourier transform (right)

Moreover, as we will see in the next sections, the STFT is invertible. However, the STFT param-
eters need to satisfy the two following constraints [14,21]:

• Nonzero OverLap Add (NOLA):
∑
m∈Z

w2[t−mH] ̸= 0

• Constant OverLap Add (COLA):
∑
m∈Z

w[t−mH] = 1

The NOLA condition is met for any window given an overlap ratio r ∈ [0, 1[. It is worth noting
that this condition can be found without the square depending on the inverse STFT algorithm.
The COLA constraint defines the partition of unity over the discrete time axis, imposing a stronger
condition.

(a) Triangular window, overlap ratio r = 1
2

(b) Hann window, overlap ratio r = 1
2

(c) Hann window, overlap ratio r = 3
8

Figure 6: The COLA condition with different windows and overlap ratios

In typical applications, the window functions used are non-negative, smooth, bell-shaped curves
[25]. A comprehensive list of windows and their properties may be found in [16]. In our model we
use the Hann window, which satisfies the COLA condition for any overlap ratio of r = n

n+1 , n ∈ N∗.
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The Hann window of length L is defined as

w(x) =
{

1+cos( 2πx
L )

2 if |x| ≤ L
2

0 if |x| > L
2

(8)

3.3.5 Uncertainty principle and resolution issues

As previously stated, both s and ŝ contain the exact same information. However, there is a
fundamental limit to the accuracy with which the values for certain pairs of physical pairs can be
observed. A known example to issue is Heisenberg’s uncertainty principle regarding the position
of a particle and its momentum [26]. Similarly, time and frequency are a pair of complementary
variables.
In the context of time-frequency analysis, the Heisenberg-Gabor limit (or simply the Gabor limit)
defines this constraint by the following inequality (proof in Appendix B)

σt · σω ≥ 1
4π (9)

where σt and σω are the standard deviations of the time and frequency respectively.
The Gabor limit means essentially that “a realizable signal occupies a region of area at least one in
the time-frequency plane.” Which means that we cannot sharply localize a signal in both the time
domain and frequency domain. This makes the concept of an instantaneous frequency impossible
[15].
A direct result of the uncertainty principle is the fact that high temporal resolution and frequency
resolution cannot be acheived at the same time.

Figure 7: STFT resolution with respect to different window sizes ∆T and overlap ratios r
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In the figure above, we see the influence of the window size and the overlap ratio on the STFT
resolution.

• Window size: For larger window sizes, we have higher frequency resolution. However, the
time resolution is low as we have fewer time samples for the STFT. For smaller windows, we
get higher time resolution as we have more time samples for the STFT, while losing frequency
resolution due to smaller FT size.

• Overlap: In the case of smaller overlaps, the resulting spectrum has time discontinuities.
Indeed, the straight line appears to be a piece-wise constant function of time. For overlap
ratios close to 1, the time resolution is significantly better obtaining the best results (given
an adequate window size). However, one should keep in mind that high overlaps can be
computationally costly.

3.3.6 Inverse Short-Time Fourier Transform

The operator Vw is an isometry from L2(R) to L2(R2) if ∥w∥2 = 1, allowing for s to be completely
determined by Vws. With the help of the orthogonality relations (Parseval’s formula) on the STFT
we obtain the inversion formula for the STFT (see Appendix A for a detailed proof).
For w, h ∈ L2(R) smooth windows such that ⟨w, h⟩ ≠ 0 we have for all s ∈ L2(R),

s(t) = 1
⟨w, h⟩

∫∫
R2
Vws(τ, ω)MωTτh(t)dωdτ (10)

= 1
⟨w, h⟩

∫∫
R2
S(τ, ω)h(t− τ)e2πiωtdωdτ (11)

3.3.7 Griffin-Lim Algorithm

The practical use of the inverse STFT is to obtain the signal from a spectrum that has undergone
some changes. Daniel W. Griffin and Jae S. Lim [14] proposed an efficient algorithm for signal es-
timation from the modified STFT. The GLA algorithm minimizes the mean squared error between
the STFT magnitude of the estimated signal and the modified STFT magnitude.
This method is efficient and easy to implement, and is widely used in signal processing libraries.
Let x ∈ L2(R) be a realizable signal and X = Vwx ∈ L2(R2) be its STFT. Let Y ∈ L2(R2) denote
the modified STFT. It’s worth noting that Y , in general, is not necessarily an STFT in the sense
that there might not be a signal y ∈ L2(R) whose STFT is Y = Vwy [14].
Let yτ ∈ L2(R2) the inverse Fourier transform of Y with respect to the frequency ω (its second
variable) at a fixed time τ ∈ R.

yτ (t) =
∫
R
Y (τ, ω)e2πiωtdω (12)

The algorithm finds iteratively the signal x that minimizes the distance between X and Y . The
distance measure between the two spectrums is defined as the norm of the difference over the
L2(R2) space

d(X,Y ) = ∥X − Y ∥2
2 =

∫∫
R2

|X(τ, ω) − Y (τ, ω)|2 dωdτ (13)

Which is expressed for discrete STFT as

d(X,Y ) =
∑
τ

∑
ω

|X[τ, ω] − Y [τ, ω]|2 (14)

10
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The signal x[t] is therefore reconstructed iteratively along the formula

x[t] =

∑
τ
yτ [t]w[t− τ ]∑
τ
w2[t− τ ] (15)

3.4 The lift to the augmented space

In order to study the Wilson-Cowan model for neural activations, we need to have a 3D represen-
tation of the sound. In this section we will explain how the STFT of the sound signal is lifted into
the contact space and explore the properties of this space.

3.4.1 The sound chirpiness

The 3D representation of the image in the sub-Riemannian model of V1 was obtained by considering
the sensitivity to directions represented by an angle θ ∈ P 1 = R/πZ.
We transpose this concept of sensitivity to directions for sound signals to sensitivity to instanta-
neous chirpiness that is the time derivative of the frequency ν = dω/dτ . The time derivative of
the frequency is indeed the slope of the tangent line in the sound spectrogram. Hence establishing
the bridge with the visual model.

3.4.2 Single time-varying frequency

As we study the sound through its instantaneous frequency and chirpiness, we consider both the
frequency and the chirpiness functions of time. To properly define the lift, we consider the following
single time-varying frequency sound signal

s(t) = A · sin(ω(t)t), A ∈ R (16)

The STFT of this signal can be therefore expressed as

S(τ, ω) = A

2i (δ0(ω − ω(τ)) − δ0(ω + ω(τ))) (17)

supposing the FT is normalized, where δ0 is the Dirac delta distribution centered at 0. Which
means that S is concentrated on the curves τ 7→ (τ, ω(τ)) and τ 7→ (τ,−ω(τ)).

Figure 8: The STFT the single time-varying frequency sound signal

So far, the sound signal is represented in the 2-dimensional space by the parametric curve t 7→
(t, ω(t)). Nevertheless, we aim to lift our signal into the 3-dimensional augmented space by adding
the sensitivity to frequency variations ν(t) = dω(t)/dt. Similarly, the lifted curve is parameterized
as t 7→ (t, ω(t), ν(t)) [7].
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3.4.3 Control system

We define the control to the chirpiness variable u(t) = dν/dt, we can therefore say that the curve
t 7→ (τ(t), ω(t), ν(t)) in the contact space is a lift of a planar curve if there exists a control u(t)
such that

d
dt

τ
ω
ν

 =

1
ν
0

 + u(t)

0
0
1

 (18)

We define the system state vector as q = (τ, ω, ν), the control system can be written as

d
dtq(t) = X0(q(t)) + u(t)X1(q(t)) (19)

where X0(q(t)) and X1(q(t)) are two vector fields in R3 defined as

X0

τ
ω
ν

 =

1
ν
0

 , X1

τ
ω
ν

 =

0
0
1

 (20)

The vector fields X0 and X1 generate the Heisenberg group, and the space {X0 + uX1|u ∈ R} is a
line in the R3 [7].

3.4.4 Lift to the contact space

In the case of a general sound signal, each level line of the spectrogram |S| (τ, ω) is lifted to the
contact space. This yeilds by the implicit function theorem the following subset of the contact
space, which is a well-defined surface if |S| ∈ C2 and Hess |S| is non-degenerate [7].

Σ =
{

(τ, ω, ν) ∈ R3|ν∂ω |S| (τ, ω) + ∂τ |S| (τ, ω) = 0
}

(21)

Which allows to finally define the sound lift in the contact space as

L(τ, ω, ν) = S(τ, ω) · δΣ(τ, ω, ν) =
{
S(τ, ω) if (τ, ω, ν) ∈ Σ
0 otherwise

(22)

The time-frequency representation is obtained from the lifted sound by applying the projection
operator defined as

Proj {L(τ, ω, ν)} (τ, ω) =
∫
R
L(τ, ω, ν)dν (23)

3.4.5 Lift implementation

We have seen that the lift to the contact space is defined through the surface Σ which is defined
with respect to ∇ |S|. The chirpiness is numerically calculated by numerically approximating the
gradient of the spectrum |S|.
The discretization of the time and frequency domains is determined by the sampling rate of the
original signal and the window size chosen in the STFT procedure. That is, by the Nyquist-
Shannon sampling theorem, for a temporal sampling rate δt and a window size of Tw, we consider
the frequencies ω such that |ω| < 1/(2δt), with a finest discretization rate of 1/(2Tw).
The frequency domain is therefore bounded. Nevertheless, the chirpiness ν defined as
ν∂ω |S| (τ, ω) + ∂τ |S| (τ, ω) = 0 is unbounded, and since generically there exists points
such that ∂ω |S| (τ0, ω0) = 0, chirpiness values stretch over the entire real line.
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Figure 9: Chirpiness of a speech signal
compared to Cauchy distribution

Figure 10: Box plots for estimated Cauchy
distributions of speech signals chirpiness.

Left: Kolmogorov-Smirnov statistic values.
Right: percentage of values falling in I0.95

To overcome this problem, a natural strategy is to model the chirpiness values as a random variable
X, and considering only chirpinesses falling inside the confidence interval Ip for some reasonable
p-value (e.g., p = 0.95). The best fit for the chirpiness values was the random variable X following
a Cauchy distribution Cauchy(x0, γ) [4] where

• x0 is the location parameter that corresponds to the location of the peak
• γ is the scale parameter that determines the shape of the distribution

The Cauchy distribution’s probability density function (PDF) is given as

fX(x) = 1

πγ

(
1 +

(
x−x0
γ

)2
) (24)

and it’s cumulative distribution function (CDF) is

FX(x) = 1
π

arctan
(
x− x0

γ

)
+ 1

2 (25)

The Cauchy parameters were estimated as follows:

• x0: the chirpiness samples median
• γ: half the interquartile range which is the difference between the 75th and the 25th percentile.

Although statistical tests on a library of real-world speech signals1 rejected the assumption that
X ∼ Cauchy(x0, γ), the fit is quite good according to the Kolmogorov-Smirnov statistic

Dn = sup
x

|Fn(x) − FX(x)| (26)

where Fn is the empirical distribution function evaluated over the chirpiness values [4].
1The speech material used in the current study is part of an ongoing psycholinguistic project on spoken word

recognition. Speech material comprises 49 Italian words and 118 French words. The two sets of words were
produced by two (40-year-old) female speakers (a French monolingual speaker and an Italian monolingual speaker)
and recorded using a headset microphone AKG C 410 and a Roland Quad Capture audio interface. Recordings
took place in the soundproof cabin of the Laboratoire de Phonétique et Phonologie (LPP) of Université de Paris
Sorbonne-Nouvelle. Both informants were told to read the set of words as fluently and naturally as possible
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3.5 Cortical activations in A1

In this model, we consider the primary auditory cortex (A1) as the space of (ω, ν) ∈ R2. When
hearing a sound signal s, A1 receives its lift to the contact space L(t, ω, ν) at every instant t. The
neuron receives an external charge S(t, ω) if (t, ω, ν) ∈ Σ and no charge otherwise.
The Wilson-Cowan equations (WC) [27] have been successfully applied to describe the evolution
of neural activations in V1 as well as A1 [5,6,9,13,19,23,29].
The WC equations have the advantage of being flexible as they can be applied independently of
the underlying geometric structure, which is only encoded in the kernel of the integral term. They
allow as well for a natural implementation of delay terms in the interactions and can be easily
tuned via few parameters with clear effect on the results.
In this model, the resulting activation a : [0, T ] × R × R → C is the solution to the WC differo-
integral equation with a delay δ.

∂

∂t
a(t, ω, ν) = −αa(t, ω, ν) + βL(t, ω, ν) + γ

∫
R2
kδ(ω, ν∥ω′, ν′)σ(a(t− δ, ω′, ν′))dω′dν′ (27)

where

• α, β, γ > 0 are parameters
• σ : C → C is a non-linear sigmoid where σ(ρeiθ) = σ̃(ρ)eiθ with σ̃(x) = min {max {0, κx} , 1} ,∀x ∈

R given a fixed κ > 0.
• kδ(ω, ν∥ω′, ν′) is a weight modeling the interaction between (ω, ν) and (ω′, ν′) after a delay
δ > 0 via the kernel of the transport-diffusion operator associated to the contact structure
of A1.

When γ = 0, the WC equation becomes a standard low-pass filter ∂ta = −αa+ L whose solution
is simply

a(t, ω, ν) =
∫ t

0
e−α(s−t)L(t, ω, ν)ds (28)

With γ ̸= 0, a non-linear delayed interaction term is added on top of the low-pass filter, encoding
the inhibitory and excitatory interconnections between neurons [7].
In the scope of the internship, no work was carried on the integral kernel. Hence, no further
explanation on the WC model is needed.
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4 Implementation

Julia is a relatively new language, it first appeared in 2012, and its version 1.0 was released in
2018. The language was built to be fast, general-purpose, dynamic, and highly technical [3].
Julia respresents a great alternative for scientific computing and visualization to replace C/C++,
Fortran, Python, Matlab, and R. It is designed to have the speed of C and Fortran, with the
ease of use of Python, Matlab, and R. All while maintaining a great syntax for general purpose
programming.
Julia is a serious contender as a scientific programming language. However, the Julia community is
still considerabely smaller than other scientific programming languages. For instance, in the 2021
Stack Overflow Developer Survey, 1.29% responded they wanted to work in Julia over the next
year against 48.24% in Python and 4.66% in Matlab [1]. As a result, Julia has less stable scientific
libraries than other languages.

4.1 The WCA1.jl library

The model was first implemented by Dario Prandi, allowing to present a series of ex-
periments on simple synthetic sounds. The code and the experiments are available at
https://github.com/dprn/WCA1.
The work I carried on during the internship was built on top of the original code, my contribu-
tions are available at https://github.com/rand-asswad/WCA1, which is forked from the original
repository.
Indeed, rewriting the code was necessary in order to experiment on real sound signals as they are
considerabely larger, otherwise the code would run for a long time and in some cases errors would
arise. Moreover, an official scientific package should be well-written and well-documented, and
should also try to respect Julia’s code style and recommendations.

4.1.1 The STFT module

Reimplementing the STFT module was necessary in order to carry out experiments on real sound
signals, the preexisting code was not well adapted for such signals. Furthermore, an inverse STFT
implementation is missing from the Julia standard libraries such as FFTW.jl and DSP.jl. Hence, I
researched efficient algorithms for implementing the inverse STFT and landed on the Griffin-Lim
algorithm [14].

Figure 11: Left: speech sound s compared with s̃ = STFT−1 {STFT {s}}. Right: spectrogram
|S| (τ, ω) = |STFT {s(t)}|
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4.1.2 Optimizing the lift module

The sound chirpiness is computed by calculating gradient of the spectrum matrix ∇ |S|, which
gives the chirpiness with respect to each time-frequency pair

ν(τ, ω) =
{

− ∂τ |S|(τ,ω)
∂ω|S|(τ,ω) if |∂ω |S| (τ, ω)| > ε

0 otherwise
(29)

where ε is a small threshold.
Afterwards, the chirpiness values are compared to a Cauchy distribution, allowing to establish a
confidence interval Ip (we take p = 0.95), in order to cut the tails that extend over the entire real
line.
The chirpiness values ν ∈ Ip = [νmin, νmax] are then discretized as the following: Let (νn)1≤n≤N
such that νmin = ν1 < · · · < νN = νmax. Each value ν is rounded to the nearest νn.

n(ν) =
⌊

ν − νmin

νmax − νmin
(N − 1) + 1

⌉
, ∀ν ∈ Ip (30)

where ⌊·⌉ : R → Z is the rounding function to the nearest integer.
This was optimized by implementing the function in a variety of ways, then benchmarking the
time and memory consumption for each implementation over every sample sound from the speech
library. We noticed that the rounding function n(ν) can be rewritten as an affine function with
respect to ν, avoiding to do the same operations inside the loop, thus saving time and memory.
The explicit expression and the affine expression were both implemented using a traditional loop,
list comprehension, and Julia’s broadcast operator. The list comprehension was clearly the fastest,
without compromising the function’s readability nor memory consumption.

Figure 12: The benchmarked median time for each
method ploted against the speech samples

Figure 13: Box plots of the
benchmarked time for each

method on the samples from the
speech library

It is worth noting that all of the tested methods outperform the preexisting implementation which
had redundant loops for memory allocation and variable assignment.
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4.2 Results

Figure 14: Distance of noisy sound to original one before (blue) and after (red) the processing,
plotted against the standard deviation of the noise (ε). Left: standard deviation metric. Right:

∥·∥ norm.

In the figure above, we present the results of the algorithm applied to a denoising task. Namely,
given a sound signal s, we let sε = s+ gε, where gε ∼ N (0, ε) is a gaussian random variable. We
then apply the proposed sound processing algorithm to obtain s̃ε. As a reconstruction metric we
present both the norm ∥·∥ where for a real signal s, ∥s∥ = ∥s∥1 / dim(s) with ∥·∥1 as the L1 norm
and the standard deviation std(s̃ε − s̃). We observe that according to both metrics the algorithm
indeed improves the signal [4].
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5 Conclusion

So far, we have presented a neuro-geometric model for sound reconstruction, proposed an imple-
mentation of this model in Julia, and showed results that were published in the GSI 2021 conference
proceedings.
In this section we review the model and propose potential routes for future development. We
explain as well the faced challenges, the acquired knowledge, and the effect of this internship on
my career.

5.1 Reviewing the model

The proposed model has great potential. Upon review, many ideas were sought that are worth
exploring, in this section we explain these ideas. These concepts were to be the basis of a PhD
project under the supervision of Ugo Boscain, Dario Prandi, and Giuseppina Turco. Unfortunately,
we couldn’t receive the funding for a PhD in order to continue working on this fascinating project.

5.1.1 Model analysis

The promising results obtained on simple synthetic sounds, suggested possible applications of the
model to the problem of degraded speech [7]. The tests on noisy speech were also promising.
However, the tests on cut sound signals were not as impressive. We were prompted to rethink the
lift procedure.
In its current situation, the model lifts the time-frequency representation S(τ, ω) of a sound to its
time-frequency-chirpiness representation L(τ, ω, ν) via a heuristic procedure that mimics the naive
V1 lift procedure. This presents three main drawbacks:

• The lifted representation L(τ, ω, ν), which represents the input fed to an A1 neuron (ω, ν)
at time t, depends strongly on the phase factor of S(τ, ω) ∈ C. This is unrealistic, since
(roughly speaking) the cochlea only transmits the spectrogram |S(τ, ω)| as A1 is insensitive
to phase.

• At a fixed time t > 0, the resulting representation L(t, ω, ν) is a distribution, concentrated
on a one dimensional curve in the frequency-chirpiness space. This is again unrealistic.

• The current procedure to obtain L(τ, ω, ν) requires to first compute S(τ, ω) and then to “lift”
it. This is not satisfactory from a computational point of view, where one would like to have
a streamlined procedure that yield the input L directly from the original signal.

To improve the model, it is crucial to devise a novel lift procedure allowing to bypass these problems.

Figure 15: Alternative sound reconstruction pipeline
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5.1.2 Wavelet transform

Taking the V1 models as inspiration, it is interesting to apply wavelet analysis techniques in order
to construct a reasonable structure for the A1 receptive fields, respecting the symmetries that
have already been identified in [7]. This work should be deeply connected with important signal
processing concepts, usually applied to the analysis of radar signals [20].
We started reading state-of-the-art literature on the neurophysiology of the inner ear, it was clear
that a Wavelet transform represents the signal processing in the cochlea than the STFT transform
[24,28]. It is worth mentioning that we studied extensively the auditory representation of acoustic
signals by Yang, Wang, and Shamma [28] in order to rethink the model of sound processing in the
cochlea.
The Wavelet Transform (WT) of a realizable signal s ∈ L2(R) along a wavelet ψ ∈ L2(R) is defined
by

Wψs(a, t) = 1√
a

∫
R
s(τ)ψ

(
τ − t

a

)
dτ (31)

where a is the dilation variable.
Generally, the WT has a major advantage over the STFT, which is that the time resolution
increases for higher frequencies in the WT.

Figure 16: Time resolution in the STFT and the WT [11]

Nevertheless, the WT is given in function of time t and the dilation variable a. While a implicitly
represents the frequency, obtaining the chirpiness is not as straightforward as in the case of the
STFT. In fact, we haven’t been able to define an appropriate lift from the WT. However, the WT
represents a path worth exploring more for improving the model.

5.1.3 The lift operator

We have seen the definition of the STFT operator Vγ in equation (6) from unitary time and
frequency shift operators Tτ ,Mω ∈ U(L2(R)). A mathematically elegant solution to the lift problem
is to introduce a unitary operator Cν on realizable signals s ∈ L2(R) such that

Lγs(τ, ω, ν) = ⟨s, CνMωTτγ⟩L2(R) (32)

such an operator would be mathematically stable and computationally cheap. Unfortunately, no
such result was obtained, only further exploration would reveil if such representation is possible.
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5.1.4 The group representation

The quest of redefining the sound lift to the contact space from the Wavelet transform time-
frequency representation started by studying the group representation of the model.
Developing the group representation of the time-frequency representation ended up confirming
both models. Unfortunately, the work didn’t result in a mathematical definition of the chirpiness
(see Appendix C). Nevertheless, the established work would serve as a basis for further exploration.

5.1.5 The WCA1.jl package

The new implementation qualifies as a Julia package, given the quality of the code with respect to
efficiency and its documentation.
Hence, once the model is adjusted, the resulting code should be released as a free open-source
Julia package. Which would contribute to the quite immature sound signal processing ecosystem
in Julia (alongside DSP.jl and WAV.jl). Finally, the resulting code should be published on JOSS
(the Journal of Open Source Software).

5.1.6 A sparse lift implementation

I noticed that the lifted sound representation L[τ, ω, ν] was sparse 3D array. This quality would
save a lot of memory since in our samples the ratio of non-zero elements in L was under 10%.
Nevertheless, Julia does not have a standard implementation for sparse 3D arrays. I therefore
proceeded to research and implement a hashmap-based (dictionary) sparse 3D array on top of
Julia’s standard AbstractSparseArray interface. My implementation would occupy under 15% of
the memory. However, the computation speed is considerably less as the hashmap-based approach
for encoding sparse 3D arrays is far from optimal. An alternative more efficient approach could be
considered for implementing such module without compromising the algorithm’s speed.

5.2 Acquired knowledge

The presented model is clearly complex and interdisciplinary. The mission requires a deep under-
standing of fundamental mathematics, namely geometry, control theory, and group representations,
as well as applied mathematics skills such as signal processing and numerical analysis.
While the general mission of the internship was known beforehand, the tasks I had to carry out
where changed in light of new results and my role evolved throughout the internship.
I first needed to familiarize myself with the accomplished work, a preliminary study of the image
reconstruction was needed in order to understand the sound model and the challenges that are faced
in adapting the initial model for sound reconstruction. This triggered learning new mathematical
concepts. I did a general reading of Foundations of Time-Frequency Analysis by Gröchenig [15]
which served as a reference throughout the internship. While I had a working understanding
of basic Fourier analysis thanks to INSA courses and a familiarity of the Uncertainty Principle
and the Short-Time Fourier Transform thanks to my work on music information retreival for my
final Master’s project. The book explains these principles rigourously and also serves as a great
source for learning about the Heisenberg Group and Wavelet Transforms which are the basis of
the proposed model.
Moreover, studying the existing litterature on the subject and working the mathematical model
helped me learn domains of fundamental and applied mathematics that were new to me.
In addition, co-writing a conference paper and attending the conference of Geometric Science of
Information was an outstanding experience that I am for extremely grateful.
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Finally, the model is implemented in Julia code, which was a new programming language for me,
I therefore learned Julia to be able to improve the existing code. Having a great basis in low-level
and high-level languages, undoubtedly due to my INSA education and internships, I was able to
write Julia code in very little time. Nevertheless, it was very important to me to learn Julia norms
and common practices to write elegant and modular code, as well as learning the mechanisms of
this high-level language in order to optimize the code’s performance. This deeper knowledge of
Julia was gained in the following months.

5.3 My future project

This internship has widened my horizons even more than I had hoped. I have been more and
more interested in pursuing a career in academic research for the last few years. Nevertheless, this
internship has allowed me to confirm my interest in such career. I also gained an appreciation for
geometry and analysis.
While I didn’t get the opportunity to pursue a PhD thesis in this project, I have decided, with
the help and guidance of my supervisors, to enroll in a theoretical mathematics Master’s degree
at University of Lorraine in Nancy. The program focuses on PDEs and control theory from a
theoretical point of view, which would allow me, combined with my skills in applied mathematics
that I cultivated at INSA Rouen Normandie, to pursue a PhD in these domains.
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A Short-Time Fourier Transform

A.1 Parseval’s formula

Parseval’s formula for the Fourier transform can be transposed to the STFTs of two signals.

Theorem 1 (Parseval’s formula). Consider the STFT of two signals s1 and s2 taken over the
windows w1 and w2 respectively.

⟨Vw1s1, Vw2s2⟩L2(R2) = ⟨s1, s2⟩L2(R) ⟨w1, w2⟩L2(R) (33)

Proof. In order to prove Parseval’s formula, we use Fubini’s theorem to interchange the order of
integration, we assume that w1w2 ∈ L1(R). We also make use of the fact that

δ(t) =
∫
R
e−2πiwtdω, ∀t ∈ R (34)

where δ is the Dirac distribution

⟨Vw1s1, Vw2s2⟩L2(R2) =
∫
R2

⟨s1,MωTτw1⟩ ⟨s2,MωTτw2⟩dτdω (35)

=
∫
R2

∫
R
s1(t)MωTτw1(t)dt

∫
R
s2(t′)MωTτw2(t′)dt′dτdω (36)

=
∫
R4
s1(t)Tτw1(t)s2(t′)Tτw2(t′)e−2πiω(t−t′)dtdt′dτdω (37)

=
∫
R3
s1(t)Tτw1(t)s2(t′)Tτw2(t′)

∫
R
e2πiω(t−t′)dωdtdt′dτ (38)

=
∫
R3
s1(t)Tτw1(t)s2(t′)Tτw2(t′)δ(t− t′)dtdt′dτ (39)

=
∫
R2
s1(t)Tτw1(t)

∫
R
s2(t′)Tτw2(t′)δ(t− t′)dt′dtdτ (40)

=
∫
R2
s1(t)Tτw1(t)s2(t)Tτw2(t)dtdτ (41)

=
∫
R
s1(t)s2(t)

∫
R
Tτw1(t)Tτw2(t)dτdt (42)

=
∫
R
s1(t)s2(t)

∫
R
w1(t− τ)w2(t− τ)dτdt (43)

= ⟨s1, s2⟩L2(R) ⟨w1, w2⟩L2(R) (44)

which implies that ∥Vws∥2 = ∥s∥2 ∥w∥2, and for ∥w∥2 = 1 we have

∥Vws∥2 = ∥s∥2 , s ∈ L2(R) (45)

This means that the STFT operator Vw is an isometry from L2(R) to L2(R2) if ∥w∥2 = 1.

A.2 Inverse Short-Time Fourier Transform

Theorem 2 (STFT inversion formula). Let w, h ∈ L2(R) with ⟨w, h⟩ ≠ 0. Then for all s ∈ L2(R).

s(t) = 1
⟨w, h⟩

∫∫
R2
Vws(τ, ω)MωTτh(t)dωdτ (46)
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Proof. Since Vws ∈ L2(R2), let s̃ ∈ L2(R) be defined as

s̃(t) = 1
⟨w, h⟩

∫∫
R2
Vws(τ, ω)MωTτh(t)dωdτ (47)

We therefore have, for all φ ∈ L2(R), using Parseval’s formula

⟨s̃, φ⟩L2(R) = 1
⟨w, h⟩

∫∫
R2
Vws(τ, ω) ⟨MωTτh, φ⟩L2(R) dωdτ (48)

= 1
⟨w, h⟩

∫∫
R2
Vws(τ, ω)⟨φ,MωTτh⟩L2(R)dωdτ (49)

= 1
⟨w, h⟩

∫∫
R2
Vws(τ, ω)Vhφ(τ, ω)dωdτ (50)

= 1
⟨w, h⟩

⟨Vws, Vhφ⟩L2(R2) (51)

= ⟨s, φ⟩L2(R) (52)

Since ⟨s̃, φ⟩L2(R) = ⟨s, φ⟩L2(R) ,∀φ ∈ L2(R) then in the weak sense s̃ = s.

It is worth noting that this proof is better expressed with concepts of operator algebra. Let’s
consider F a function on E such that F (x) ∈ B forall x ∈ E, where B is a Banach space, we
therefore have

f =
∫
E

F (x)dx =⇒ ⟨f, φ⟩ =
∫
E

⟨F (x), φ⟩ dx (53)

for all φ ∈ B∗ where B∗ is the dual space to B. Moreover, if the mapping ℓ(φ) 7→
∫
E

⟨F (x), φ⟩ dx
is a bounded linear operator on B∗, then ℓ defines a unique element f ∈ B∗∗. If B is a reflexive
Banach space (B∗∗ = B), we have a f ∈ B. In our case, E = R2 and F ∈ L2(R2). Let f be defined
as

f =
∫∫

R2
F (τ, ω)MωTτγdωdτ (54)

The operator ℓ is then defined as

ℓ(φ) =
∫∫

R2
F (τ, ω) ⟨MωTτγ, φ⟩L2(R) dωdτ =

∫∫
R2
F (τ, ω)⟨Vγφ⟩L2(R)dωdτ (55)

We prove ℓ is a bounded operator on B∗ = L2(R) with the help of the Cauchy-Schwartz inequality
and Parseval’s formula.

∀φ ∈ L2(R), |ℓ(φ)| ≤ ∥F∥2 ∥Vγφ∥2 = ∥F∥2 ∥γ∥2 ∥φ∥2 (56)

Which implies that ℓ defines a unique function f ∈ L2(R) such that ⟨f, φ⟩L2(R) = ℓ(φ),∀φ ∈ L2(R).

B Uncertainty principle

The Heisenberg-Gabor limit, is a direct result of the Heisenberg-Pauli-Weyl inequality [15].

Theorem 3 (Heisenberg-Pauli-Weyl inequality). Let f ∈ L2(R), then ∀a, b ∈ R(∫
R
(t− a)2 |f(t)|2 dt

)1/2 (∫
R
(ω − b)2

∣∣∣f̂(ω)
∣∣∣2

dω
)1/2

≥
∥f∥2

2
4π (57)

Proof. We aim to prove the uncertainty principle for self-adjoint operators on a Hilbert space H in
the general case. We then introduce self-adjoint operators on a Hilbert subspace of L2(R) giving
rise to the uncertainty principle for realizable signals (the Heisenberg-Pauly-Weyl inequality).
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Lemma 1. Let A and B be two self-adjoint linear operators on a Hilbert space H, whose commu-
tator is defined as

[A,B] = AB −BA (58)

Then for all a, b ∈ R and f ∈ H.

∥(A− a)f∥ ∥(B − b)f∥ ≥ 1
2 |⟨[A,B]f, f⟩| (59)

Proof. We first notice that the commutator is invariant by translation, that is ∀a, b ∈ R

[A− a,B − b] = (A− a)(B − b) − (B − b)(A− a)
= (AB − bA− aB + ab) − (BA− aB − bA+ ab)
= AB −BA

= [A,B]

We remind that an operator A is self-adjoint if

∀f, g ∈ H, ⟨Af, g⟩ = ⟨f,Ag⟩ (60)

We then deduce that ∀f ∈ H

⟨[A,B]f, f⟩ = ⟨[A− a,B − b]f, f⟩ (translation invariance)
= ⟨((A− a)(B − b) − (B − b)(A− a))f, f⟩ (bilinearity)
= ⟨(A− a)(B − b)f, f⟩ − ⟨(B − b)(A− a)f, f⟩
= ⟨(B − b)f, (A− a)f⟩ − ⟨(A− a)f, (B − b)f⟩ (self-adjointness)
= ⟨(B − b)f, (A− a)f⟩ − ⟨(B − b)f, (A− a)f⟩
= 2i Im ⟨(B − b)f, (A− a)f⟩ (z − z̄ = 2i Im(z),∀z ∈ C)

Consequently,

|⟨[A,B]f, f⟩| = 2 |Im ⟨(B − b)f, (A− a)f⟩|
≤ 2 |⟨(B − b)f, (A− a)f⟩|
≤ 2 ∥(B − b)f∥ ∥(A− a)f∥ (Cauchy-Schwartz inequality)

We now consider the following operators{
Xf(t) = t · f(t)
Pf(t) = 1

2πif
′(t)

(61)

defined over H =
{
f ∈ L2(R)|f ′, t 7→ tf(t), t 7→ tf ′(t) ∈ L2(R)

}
⊂ L2(R).

We first prove that these operators are self-adjoint, let f, g ∈ H

⟨Xf, g⟩ =
∫
R
tf(t)g(t)dt =

∫
R
f(t)tg(t)dt = ⟨f,Xg⟩ (62)

26



A bio-geometric model for sound reconstruction Rand ASSWAD

Similarly,

⟨Pf, g⟩ =
〈

1
2πif

′, g

〉
= 1

2πi

∫
R
f ′(t)g(t)dt

= − 1
2πi

∫
R
f(t)g′(t)dt (integration by parts)

=
∫
R
f(t) 1

2πig
′(t)dt

=
〈
f,

1
2πig

′
〉

= ⟨f, Pg⟩

The operators are linear since multiplication and derivation are linear.
The commutator of X and P applied to f ∈ H,

[X,P ]f(t) = XPf(t) − PXf(t)

= X

(
1

2πif
′(t)

)
− P (tf(t))

= t

2πif
′(t) − 1

2πi (f(t) + tf ′(t))

= t

2πif
′(t) − 1

2πif(t) − t

2πif
′(t)

= − 1
2πif(t)

Hence ∀f ∈ H

⟨[X,P ]f, f⟩ =
〈

− 1
2πif, f

〉
= i

2π ⟨f, f⟩ = i

2π ∥f∥2
2 (63)

Consequently
|⟨[X,P ]f, f⟩| = 1

2π ∥f∥2
2 (64)

As X and P are self-adjoint linear operators on the Hilbert space H, then following the lemma we
have ∀a, b ∈ R,∀f ∈ H.

∥(X − a)f∥2 ∥(P − b)f∥2 ≥ 1
2 |⟨[X,P ]f, f⟩| (65)

Moreover, from equation (64) we have

∥(X − a)f∥2 ∥(P − b)f∥2 ≥ 1
4π ∥f∥2

2 (66)

We develop the left-hand side

∥(X − a)f∥2 =
(∫

R
|(X − a)f(t)|2 dt

)1/2
=

(∫
R
(t− a)2 |f(t)|2 dt

)1/2
(67)

For the second factor, we apply Parseval’s formula ∥(P − b)f∥2 = ∥F {(P − b)f}∥2.
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F {(P − b)f} (ω) = F
{

1
2πif

′ − bf

}
(ω)

= 1
2πi f̂

′(ω) − bf̂(ω) (linearity of F{·})

= ωf̂(ω) − bf̂(ω) (derivation of F{·})
= (ω − b)f̂(ω)

Hence

∥(P − b)f∥2 =
∥∥∥(ω − b)f̂

∥∥∥
2

=
(∫

R
(ω − b)2

∣∣∣f̂(ω)
∣∣∣2

dω
)1/2

(68)

By injecting (67) and (68) in (64) we have ∀a, b ∈ R,∀f ∈ H(∫
R
(t− a)2 |f(t)|2 dt

)1/2 (∫
R
(ω − b)2

∣∣∣f̂(ω)
∣∣∣2

dω
)1/2

≥ 1
4π ∥f∥2

2 (69)

C Heisenberg group

C.1 Heisenberg group action on the contact space

We consider the unitary shift operators Tτ ,Mω ∈ U(L2(R)). The commutation relation of these
unitary operators is given by

TτMωT
−1
τ M−1

ω = e−2πiωτ Id (70)

Indeed, ∀s ∈ L2(R)

TτMωT
−1
τ M−1

ω s(t) = TτMωT
−1
τ e−2πiωts(t)

= TτMωe
−2πiω(t+τ)s(t+ τ)

= Tτe
−2πiωτs(t+ τ)

= e−2πiωτs(t)

We also consider the representation U from the Heisenberg group H1 defined U : H1 → U(L2(R2))
by

U(τ, ω, λ) = e−2πiλTτMω (71)

Therefore, the operator algebra generated by the unitary time and frequency shift operators coin-
cides with the Heisenberg group H1 [7].

C.2 Introducing the chirpiness to the Heisenberg group

An automorphism of a group G is a group isomorphism from G onto G.
An isomorphism from (G1, ∗) to (G2, ·) is a bijective function f : G1 → G2 such as ∀x, y ∈ G1

f(x ∗ y) = f(x) · f(y) (72)

It follows that the automorphism of a group (G, ·) is a bijective function g : G → G such as
∀x, y ∈ G

g(x · y) = g(x) · g(y) (73)
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Let’s consider the affine group group H = R+ ⋉R equipped with the square matrix multiplication.

H =
{(

a t
0 1

)∣∣∣∣ a ∈ R+, t ∈ R
}

(74)

We denote (a, t) ≡
(
a t
0 1

)
∈ H

We hence have (a, t)(b, s) ≡
(
a t
0 1

) (
b s
0 1

)
=

(
ab as+ t
0 1

)
≡ (ab, as+ t)

In order to find Aut(H) we need to define the group action (H,ψ) that verifies (73)

ψ((a, t)(b, s)) = ψ(a, t)ψ(b, s) (75)

We notice that the right conjugation by h defined as ψh(x) = h−1xh is a group action verifying
(75). For all x, y ∈ H,

ψh(xy) = h−1xyh = (h−1xh)(h−1yh) = ψh(x)ψh(y) (76)

ψh is therefore an inner automorphism of H.
Let h = (b, s) ∈ H therefore ψh is defined ∀(a, t) ∈ H

ψh(a, t) = (b, s)−1(a, t)(b, s) =
(
a,
t

b
+ (a− 1)s

b

)
(77)

Let h = (b, 0) ∈ H, the inner automorphism is defined as ψh(a, t) = (a, t/b).
This corresponds to multiplying the chirpiness by b ∈ R+. Hence allowing to redefine the aug-
mented space of (ν, a, t) as the semidirect product G = R⋉H with respect to ψ ∈ Aut(H). Never-
theless, further work is needed in order to construct such space from the Wavelet time-frequency
representation.
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