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Internship mission

Work on the proposed neuro-geometric sound reconstruction model.

Subtasks:

Study the existing model
Test on real speech signals
Publish results
Reimplement WCA1.jl package
Rethink model & study litterature
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Image reconstruction model
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Neuro-geometric model of V1
Image reconstruction model

Basis of the V1 model - starting point

1 Hubel and Weisel (1959) [13] observed that there are groups of neurons sensitive to
positions and directions
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Image reconstruction model

Basis of the V1 model - 3D representation

2 Which inspired Hoffman (1989) [12] to model V1 as a contact space (a 3D manifold
endowed with a smooth map)

3 The Citti-Petitot-Sarti (CPS) model (2006) [7,16] extended the model to sub-Riemannian
structures

The CPS model:
An image can be seen as a function
f : R2 → R+ representing the grey level at
given coordinates
The primary visual cortex (V1) adds the
non-directed angle θ ∈ P1 = R/πZ of the
tangent line to the curve.
The visual cortex lifts a curve into R2 × P1.
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Neuro-geometric model of V1
Image reconstruction model

Basis of the V1 model - image reconstruction

4 Ugo Boscain, Dario Prandi, Jean-Paul Gauthier, and their colleagues proposed (in 2017)
[2,3] an image reconstruction model based on the CPS model.

If a curve is interrupted in an interval, then the visual cortex tries to reconstruct it by taking the
shortest curve in the lifted space.
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Neuro-geometric model of V1
Image reconstruction model

Wilson-Cowan model [19]

The Wilson-Cowan (WC) model describes the evolution of neural activations
WC describes the evolution of excitatory and inhibitory activity in a synaptically coupled
neuronal network
The interaction between the hypercolumns in V1 can be described through the WC equation
[5]

Let a(x , θ, t) be the state of a population of neurons with coordinates x ∈ R2 and orientation
θ ∈ P1 at time t > 0, the WC integro-differential equation is given by [2]

∂

∂t a(x , θ, t) = −αa(x , θ, t) + ν

∫
R2×P1

ω(x , θ‖x ′, θ′)σ(a(x ′, θ′, t))dx ′dθ′ + h(x , θ, t)
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Neuro-geometric model of V1
Image reconstruction model

Reconstruction of a 97% corrupted image

original corrupted reconstructed
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Neuro-geometric model of V1
Image reconstruction model

Which begs the question

Can we apply these ideas to the problem of sound reconstruction?
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From V1 to A1
Time-Frequency representation
The lift to the augmented space
Cortical activations in A1

Section 3

Sound reconstruction model
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Motivation

A sound signal s(t) can be seen as an image in the time-frequency domain |S|(τ, ω)
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Taking into account:

1 In image reconstruction the whole image is evolved simultaneously. However, the sound
image (spectrogram) does not reach the auditory cortex simultaneously but sequentially.
Hence, the reconstruction can be performed only in a sliding window.

2 A rotated sound image corresponds to a completely different input sound, therefore the
invariance by rototranslation is lost.
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Sound signal processing in the cochlea

The primary auditory cortex (A1) receives the sensory input directly
from the cochlea [8], which is a spiral-shaped fluid-filled cavity that
composes the inner ear.

The mechanical vibrations along the basilar membrane are
transduced into electrical activity along a dense,
topographically ordered, array of auditory-nerve fibers (hair
cells) which convey these electrical potentials to the central
auditory system.
Since the inner hair cells are topographically ordered along the
cochlea spiral, different regions of the cochlea are sensitive to
frequencies as follows [20]:

Hair cells close to the base are more sensitive to low-frequency
sounds
near the apex are more sensitive to high-frequency sounds
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Sound reconstruction pipeline
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Time representation & Frequency representation
We consider a realizable sound signal s ∈ L2(R)

Frequency representation:

ŝ(ω) = F {s(t)} (ω) =
∫
R
s(t)e−2πiωtdt

Time representation:

s(t) = F−1 {ŝ(ω)} (t) =
∫
R
ŝ(ω)e2πiωtdω

Since s = F−1 {ŝ}, we can say about s and ŝ that they
both contain the exact same information
both represent the same object s ∈ L2(R)
they simply show different features of s

A time-frequency representation would combine the features of both s and ŝ into a single
function. Such representation provides an instantaneous frequency spectrum of the signal at any
given time [11].
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Short-Time Fourier Transform (STFT)
Definition (Short-Time Fourier Transform)
Let s ∈ L2(R) be a time signal, let ω ∈ L2(R) be a compactly supported window centered
around 0. The STFT of s with respect to the window w is defined as

S(τ, ω) = STFT {s(t)} (τ, ω) =
∫
R
s(t)w(t − τ)e−2πiωtdt

The STFT is
a very common time-frequency representation of a
signal
the Fourier transform of the s(t)w(t − τ), the signal
taken over a sliding window along the time axis
usually taken along a smooth window because a
sharp cut-off introduces discontinuities and aliasing
issues [11]
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Time and frequency shifts operators
Definition (Time and frequency shifts operators)
Let s ∈ L2(R) be a time signal, we define for all τ, ω ∈ R

Time shift operator: Tτ s(t) = s(t − τ)
Phase shift operator: Mωs(t) = e2πiωts(t)

We call Tτ and Mω unitary operators in U(L2(R))

The STFT can be formulated using these unitary operators

S(τ, ω) =
∫
R
s(t)w(t − τ)e−2πiωtdt

=
∫
R
s(t)MωTτw(t)dt

= 〈s,MωTτw〉L2(R)

We can redefine the STFT as an operator Vw on s ∈ L2(R) defined in function of
Tτ ,Mω ∈ U(L2(R)) [4,11].

Vw s(τ, ω) = 〈s,MωTτw〉L2(R)
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Discrete STFT
Similarly to the continuous STFT, the discrete STFT is the Discrete Fourier Transform (DFT) of
the signal over a sliding window. Nevertheless, the window cannot slide continuously along the
time axis, instead the signal is windowed at different frames with an overlap. The window
therefore hops along the time axis.

Discrete STFT parameters:

Window size (DFT size): N
Overlap size: R
Hop size: H = N − R
Overlap ratio: r = R/N ∈ [0, 1[

Definition (Discrete Short-Time Fourier Transform)
The discrete STFT of a signal s ∈ L2([0,T ]) over a window w is defined as

S[m, ω] =
T∑

t=0
s[t]w [t −mH]e−2πiωt
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STFT windowing
The choice of the window affects the quality of the Fourier transform.

Window function s(t)w(t − t0) F {s(t)w(t − t0)} (ω)

Rectangular

Triangular

Hann
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STFT windowing - invertibility constraints
The STFT is invertible if its parameters satisfy the two
following constraints [10,15]:

Nonzero OverLap Add (NOLA):∑
m∈Z

w2[t −mH] 6= 0

Constant OverLap Add (COLA):∑
m∈Z

w [t −mH] = 1

Triangular window, overlap ratio r = 1
2

Hann window, overlap ratio r = 1
2

Hann window, overlap ratio r = 3
8

The NOLA condition is met for any window given an overlap ratio r ∈ [0, 1[. It is worth noting
that this condition can be found without the square depending on the inverse STFT algorithm.

The COLA constraint defines the partition of unity over the discrete time axis, imposing a
stronger condition.

Rand Asswad A bio-inspired geometric model for sound reconstruction 23 September 2021 24/66



Introduction
Image reconstruction model
Sound reconstruction model

Implementation
Conclusion

From V1 to A1
Time-Frequency representation
The lift to the augmented space
Cortical activations in A1

STFT windowing - Hann window

Remark
In typical applications, the window functions used are non-negative, smooth, bell-shaped curves.

In our model we use the Hann window, which satisfies the COLA condition for any overlap ratio
of r = n

n+1 , n ∈ N∗.

The Hann window of length L is defined as

w(x) =
{

1+cos( 2πx
L )

2 if |x | ≤ L
2

0 if |x | > L
2
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Uncertainty principles

In mathematics, uncertainty principles are

limits to the accuracy with which the values for certain physical pairs can be obeserved
inequilities that involve pairs of complementary/disjoint variables

Common examples are

Heisenberg’s Uncertainty Principle: a particle’s momentum and its position
The Heisenberg-Gabor limit: a signal’s time and frequency

Theorem (Heisenberg-Pauli-Weyl inequality)
Let f ∈ L2(R), then ∀a, b ∈ R(∫

R
(t − a)2 |f (t)|2 dt

)1/2(∫
R

(ω − b)2
∣∣∣f̂ (ω)

∣∣∣2 dω
)1/2

≥
‖f ‖22
4π
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Uncertainty principle - the Heisenberg-Gabor limit
From the Heisenberg-Pauli-Weyl Inequality, we obtain the following theorem

Theorem (Heisenberg-Gabor limit)
Let f ∈ L2(R), if ‖f ‖2 = 1 then

σt · σω ≥
1
4π

where σt and σω are the standard deviations of the time and frequency respectively.

Interpretation of the standard deviations:

σt is the size of the essential support of f
σω is the size of the essential bandwidth of the signal centered around the average
frequency ω̄

The Gabor limit means that

“a realizable signal occupies a region of area at least one in the time-frequency plane.”
we cannot sharply localize a signal in both the time domain and frequency domain
the concept of an instantaneous frequency is impossible [11]
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Uncertainty principle - resolution issues
STFT resolution with respect to different window sizes ∆T and overlap ratios r

Influence of the window size and the
overlap ratio:

Window size:
Larger windows =⇒ higher
frequency resolution & lower
time resolution
Smaller windows =⇒ lower
frequency resolution & higher
time resolution

Overlap:
Small overlaps =⇒ time
discontinuities &
computationally cheaper
Big overlaps =⇒ more time
precision & computationally
costly
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Inverse STFT
Theorem (Parseval’s Formula for the STFT)
Consider two signals s1, s2 ∈ L2(R), and two windows w1,w2 ∈ L2(R), then

〈Vw1s1,Vw2s2〉L2(R2) = 〈s1, s2〉L2(R) 〈w1,w2〉L2(R)

Proposition
If ‖w‖2 = 1 then the STFT operator Ww is an isometry from L2(R) to L2(R2).
This can be easily shown from Parseval’s Formula

∀s,w ∈ L2(R), ‖Vw s‖2 = ‖s‖2 ‖w‖2 =⇒ ‖Vw s‖2 = ‖s‖2 ,∀s ∈ L2(R) if ‖w‖2 = 1

Theorem (Inverse Short-Time Fourier Transform)
Let w , h ∈ L2(R) with 〈w , h〉 6= 0. Then for all s ∈ L2(R)

s(t) = 1
〈w , h〉

∫∫
R2

Vw s(τ, ω)MωTτh(t)dωdτ = 1
〈w , h〉

∫∫
R2

S(τ, ω)h(t − τ)e2πiωtdωdτ
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Inverse STFT - Griffin-Lim Algorithm [10]

Advantages:
efficient and easy to implement
works on modified STFT

General idea:
Let Y ∈ L2(R2) be a modified STFT
There might not be y ∈ L2(R) such that
Y = Vwy
The GLA finds a signal x ∈ L2(R) with
X = Vwx that minimizes
d(X ,Y ) = ‖X − Y ‖22
We consider x the inverse STFT of the
modified STFT Y .

Algorithm:
Calculate yτ ∈ L2(R2) the inverse Fourier
transform of Y with respect to the
frequency ω at a fixed time τ .

yτ (t) =
∫
R
Y (τ, ω)e2πiωtdω

Find iteratively the signal x that minimizes
d(X ,Y )

x [t] =

∑
τ
yτ [t]w [t − τ ]∑
τ
w2[t − τ ]
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The sound chirpiness

3D representation in our models

V1 model: sensitivity to directions

θ ∈ P1 = R/πZ

A1 model: sensitivity to sound chirpiness

ν = dω
dτ ∈ R

Interpretation of the instantaneous chirpiness:

the time derivative of the frequency
the slope of the frequency w(t)
the tangent of the sound image directions tan θ
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The sound chirpiness - single frequency spectrum

Single constant frequency Single time-varying frequency

s(t) = A · sin(ω0t) s(t) = A · sin(ω(t)t)

ŝ(ω) = A
2i (δ0(ω − ω0)− δ0(ω + ω0)) S(τ, ω) = A

2i (δ0(ω−ω(τ))−δ0(ω+ω(τ)))
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The sound chirpiness - single time-varying frequency

Parametric representation of the sound

s(t) = A · sin(ω(t)t)

In the time-frequency domain: t 7→ (t, ω(t))
In the augmented space: t 7→ (t, ω(t), ν(t))

with
ν(t) = dω

dt (t)
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Representation in contact space - control system
What’s the nature of the curve t 7→ (t, ω(t), ν(t))?

Let’s define u(t) = dν/dt, the curve in the contact space t 7→ (t, ω(t), ν(t)) is a lift of a planar
curve if there exists a function u(t) such that

d
dt

τω
ν

 =

1
ν
0

+ u(t)

0
0
1


Let q = (τ, ω, ν), the previous equations is the state equation of a control system written as

d
dt q(t) = X0(q(t)) + u(t)X1(q(t))

where X0(q(t)) and X1(q(t)) are two vector fields in R3

X0

τω
ν

 =

1
ν
0

 , X1

τω
ν

 =

0
0
1


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Representation in contact space - Heisenberg group

The two vector fields in R3

X0

τω
ν

 =

1
ν
0

 , X1

τω
ν

 =

0
0
1


Generate the Heisenberg group because [4,11]

Z = [X0,X1] 6= 0
[Z ,X0] = [Z ,X1] = 0
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Lift to the contact space
We lift the each level line of the spectrum |S| (τ, ω) to the contact space. Yeilding the following
subset of the contact space, which is a well-defined surface if |S| ∈ C2 and Hess |S| is
non-degenerate [4].

Σ =
{

(τ, ω, ν) ∈ R3|ν∂ω |S| (τ, ω) + ∂τ |S| (τ, ω) = 0
}

Which allows to finally define the sound lift in the contact space as

L(τ, ω, ν) = S(τ, ω) · δΣ(τ, ω, ν) =
{
S(τ, ω) if (τ, ω, ν) ∈ Σ
0 otherwise

The time-frequency representation is obtained from the lifted sound by applying the projection
operator defined as

Proj {L(τ, ω, ν)} (τ, ω) =
∫
R
L(τ, ω, ν)dν
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Cortical activations in A1 - Wilson-Cowan model

We model the cortical activations in A1 as follows

The primary auditory cortex (A1) is a space of (ω, ν) ∈ R2.
A1 receives the sound lift to the contact space L(t, ω, ν) at every instant t.
The neuron receives an external charge S(t, ω) if (t, ω, ν) ∈ Σ and no charge otherwise.

We need to model these neural activations  Wilson-Cowan model

Successfully applied to describe neural activations in V1 and A1 [2,3,6,9,14,17,21]
Flexible model, applies independently to the underlying geometric structure
Geometric structure is encoded in the kernel of the integral term
Implementation of delay terms
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Wilson-Cowan equation

∂

∂t a(t, ω, ν) = −αa(t, ω, ν) + βL(t, ω, ν) + γ

∫
R2

kδ(ω, ν‖ω′, ν′)σ(a(t − δ, ω′, ν′))dω′dν′

where

α, β, γ > 0 are (tuning) parameters
σ : C→ C is a non-linear sigmoid

σ(ρe iθ) = σ̃(ρ)e iθ

σ̃(x) = min {max {0, κx} , 1} , ∀x ∈ R given a fixed κ > 0
kδ(ω, ν‖ω′, ν′) is a weight modeling the interaction between (ω, ν) and (ω′, ν′) after a
delay δ > 0 via the kernel of the transport-diffusion operator associated to the contact
structure of A1
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Wilson-Cowan equation with no delay

When γ = 0, the WC equation becomes a standard low-pass filter

∂ta(t, ω, ν) = −αa(t, ω, ν) + L(t, ω, ν)

whose solution is simply

a(t, ω, ν) =
∫ t

0
e−α(s−t)L(t, ω, ν)ds

Here, ω and ν are parameters  there is no interaction between regions sensitive to different ω
and ν.
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Wilson-Cowan equation with delayed interaction

∂

∂t a(t, ω, ν) = −αa(t, ω, ν) + βL(t, ω, ν) + γ

∫
R2

kδ(ω, ν‖ω′, ν′)σ(a(t − δ, ω′, ν′))dω′dν′

With γ 6= 0, a non-linear term is added on top of the low-pass filter:

The added term describes the diffusion of the activation in side A1
The added term encodes the inhibitory and excitatory interconnections between neurons
The sigmoid is a non-linear function that saturates the signal a
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The WCA1.jl package
Published results

Section 4

Implementation
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The WCA1.jl package
Published results

The Julia language

The Julia language is

New
First appeared in 2012
Version 1.0 was released in 2018

Fast: comparable to Fortran and C
Easy to use: similar to Python, Matlab, and R
General-purpose
Great for scientific computing

Julia community is small: in 2021 Stack Overflow Developer Survey [22] “Which language
developers wanted to work in over the next year?”

Julia: 1.29%
Python: 48.24%
Matlab: 4.66%

Result: less stable scientific libraries in Julia than other languages
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The WCA1.jl package
Published results

The WCA1.jl package

Original code: https://github.com/dprn/WCA1
Forked repository: https://github.com/rand-asswad/WCA1

Issues with original code:

Unstable  failed to run on speech signals
Far from optimal  took long time to run on speech signals
Low readability
Non-conforming to Julia’s code norms and performance recommendations
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The STFT module
Issue: no implementation of the inverse STFT in Julia’s standard libraries (FFTW.jl
andDSP.jl).

Solution: implemented the Griffin-Lim algorithm [10] from scratch
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The Lift module - calculating chirpiness values

The sound chirpiness is defined as

ν∂ω |S| (τ, ω) + ∂τ |S| (τ, ω) = 0

We compute the chirpiness with respect to each time-frequency pair by calculating the gradient
of the spectrum ∇ |S|.

ν(τ, ω) =
{
− ∂τ |S|(τ,ω)
∂ω|S|(τ,ω) if |∂ω |S| (τ, ω)| > ε

0 otherwise

where ε is a small threshold.
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The Lift module - chirpiness sampling issue

Issue: the chipriness values ν are unbounded since

ν∂ω |S| (τ, ω) + ∂τ |S| (τ, ω) = 0

and there exists points (τ0, ω0) such that ∂ω |S| (τ0, ω0) = 0

therefore chirpiness values stretch over the entire real line (coverge to ±∞)

Original solution: manually restrict chirpiness values to ν ∈ [νmin, νmax] for synthetic signals
(the limits are determined after visualizing the histogram of the chirpiness values).

Needed solution: a reliable method to automatically determine the interval [νmin, νmax] without
losing (a lot of) values.
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The Lift module - chirpiness values distribution

We noticed that the chirpiness values of speech signals follow a Cauchy distribution [1]
Let X be a random variable following Cauchy(x0, γ)

Location parameter x0: location of the peak
Scale parameter γ: half the interquartile range

Probability density function (PDF):

fX (x) = 1

πγ

(
1 +

(
x−x0
γ

)2)
Cumulative distribution function (CDF):

FX (x) = 1
π

arctan
(
x − x0
γ

)
+ 1

2
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The Lift module - chirpiness values distribution
Estimating Cauchy parameters Cauchy(x0, γ):

x0: the chirpiness samples median
γ: half the interquartile range (difference
between the 75th and the 25th percentile)

Assumption:

ν ∼ Cauchy
(

median(ν), Q(75%)− Q(25%)
2

)
Stastical tests on a library of real speech signals
rejected the assumption.
Nevertheless, the fit is quite good according to
the Kolomogorov-Smirnov statistic

Dn = sup
x
|Fn(x)− FX (x)|

where Fn is the empirical distribution function

Box plots for estimated Cauchy distributions of
speech signals chirpiness values

left: Kolmogorov-Smirnov statistic values.
right: percentage of values falling in I0.95
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The Lift module - chirpiness sampling

1 Calculate chirpiness values for each (τ, ω)
2 Compute values to Cauchy distribution to find confidence interval Ip = [νmin, νmax]
3 Discretize chirpiness values ν ∈ Ip as follows

Let (νn)1≤n≤N such that νmin = ν1 < · · · < νN = νmax.

Each value ν is rounded to the nearest νn.

n(ν) =
⌊

ν − νmin
νmax − νmin

(N − 1) + 1
⌉
, ∀ν ∈ Ip

where b·e : R→ Z is the rounding function to the nearest integer.
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The Lift module - chirpiness sampling optimization

The function n(ν) can be optimized by rewriting it as an affine function

n(ν) =
⌊

ν − νmin
νmax − νmin

(N − 1) + 1
⌉

=


(

N − 1
νmax − νmin

)
︸ ︷︷ ︸

a

·ν +
(
1− (N − 1)νmin

νmax − νmin

)
︸ ︷︷ ︸

b

 = ba · ν + be

This reduces the number of arithmetic operations inside the loop in O(n) complexity.
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The Lift module - chirpiness sampling benchmark
Using Julia’s standard benchmark tools, we ran a benchmark on the speech library samples with
different chirpiness implementations.

The benchmarked median time for each method ploted
against the speech samples

Box plots of the benchmarked time for
each method on the speech samples
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Denoising experiment [1]
We apply a gaussian random noise gε ∼ N (0, ε) to a an input sound s, we process the noisy
sound input through the algorithm pipeline

Input: sε = s + gε
Output: s̃ε = STFT−1 ◦ Proj ◦WC ◦ Lift ◦ STFT(sε)

Distance of noisy sound to original one before (blue) and after (red) the processing, plotted
against the standard deviation of the noise ε (where ‖s‖ = ‖s‖1 / dim(s))
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Section 5

Conclusion
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Model analysis

The sound reconstruction model:

improves noisy speech signals
is mathematically stable
has great potential

Conclusion:

the model should be improved and adapted to more corrupted sounds
the model deserves to be the basis of a PhD project

We will see the paths we explored to improve the model
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Model analysis - Lift drawbacks

The lifted representation
L(τ, ω, ν) = S(τ, ω)δσ(τ, ω, ν) depends on
the phase of S(τ, ω) ∈ C. This is
unrealistic, since the cochlea only transmits
the spectrogram |S(τ, ω)| because A1 is
insensitive to phase.
At a fixed time t > 0, the resulting
representation L(t, ω, ν) is a distribution,
concentrated on a one dimensional curve in
the frequency-chirpiness space which is also
unrealistic.
The current procedure to obtain L(τ, ω, ν)
requires to first compute S(τ, ω) and then
to “lift” it. We would like to obtain L
directly from the original signal s.

To improve the model, it is crucial to devise a
novel lift procedure allowing to bypass these
problems.

Alternative sound reconstruction pipeline
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Model analysis - Wavelet Transform

By reading state-of-the-art literature on the neurophysiology of the inner ear, we realized that a
Wavelet transform represents the signal processing in the cochlea than the STFT transform
[18,20].

Definition (Wavelet Transform)
The Wavelet Transform (WT) of a realizable signal s ∈ L2(R) along a wavelet ψ ∈ L2(R) is
defined by

Wψs(a, t) = 1√
a

∫
R
s(τ)ψ

(
τ − t
a

)
dτ

where a is the dilation variable.
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Model analysis - Wavelet Transform

Advantage: time resolution increases for higher frequencies in the WT.

Disadvantage: the dilation variable a implicitly represents the frequency ω.

Obtaining the sound chirpiness ν is not straightforward as in the case of the STFT
We haven’t been able to define an appropriate lift from the WT

Rand Asswad A bio-inspired geometric model for sound reconstruction 23 September 2021 57/66



Introduction
Image reconstruction model
Sound reconstruction model

Implementation
Conclusion

Reviewing the model
Acquired knowledge
Future project
References

Model analysis - the lift operator

We defined the STFT as operator on L2(R) in function of the unitary shift operators

Vw s(τ, ω) = 〈s,MωTτw〉L2(R)

We would like to have

Lγs(τ, ω, ν) = 〈s,CνMωTτγ〉L2(R)

where Cν ∈ U(L2(R))

Such operator would be

Mathematically stable and elegant
Computationally cheap

Rand Asswad A bio-inspired geometric model for sound reconstruction 23 September 2021 58/66



Introduction
Image reconstruction model
Sound reconstruction model

Implementation
Conclusion

Reviewing the model
Acquired knowledge
Future project
References

Acquired knowledge

Fundamental mathematics
Geometry
Group representations
Operator algebra
Time-Frequency analysis

Applied mathematics & programming
Signal processing & DSP
Julia language
Neural activations models

The neuro-physiology of the inner ear
Research experience

Studying state-of-the-art litterature
Co-writing a conference paper
Attending the GSI 2021 conference
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My future project

After my internship, I have decided to pursue

a Master’s degree in fundamental mathematics at Université de Lorraine, focusing on PDEs
and Control Theory
a PhD thesis in the domains of PDEs and Control Theory
a career in academic research
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Thank you for your attention!
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