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Introduction
Music is ubiquitous ever since humans exist. Prehistoric instruments have been found and thought to be at
least 40,000 years old. Music is a pilar of human civilisation; it relates to people’s identities, feelings and
thoughts. Hence, means of saving and sharing music are of invaluable importance. The oldest surviving
notated music work Hurrian Hymn to Nikkal found on clay tablets dates back to 1400 BC.
Various systems were developped around the globe for visually representing perceived music through the use
of written symbols. The modern western notation is the predominent musical notation worldwide for most
music genres.
With the rise of technology, audio recordings where introduced as analog signals and eventually as digital
signals, providing means for sharing and sauveguarding music aurally.
Music theory and musical notation have been studied for centuries, allowing humans and machines to retrieve
music information from common formats. Nevertheless, music processing is a relatively young discipline
compared to other subdomains of signal processing such as speech processing; while great results are achieved
today in speech recognition, the task of retreiving music information from audio recordings is still far along.
Automatic Music Transcription (AMT) is the task of analyzing musical audio signals and producing the
corresponding musical scores. This task has captured researchers interest in the late 20th century and has
become a wide research discipline as many of the problems in this domain remain unsolved. furthermore,
strides in the domain of AMT would apply to numerous applications that can facilitate creating, sharing, and
learning music.
The scope of this thesis is the domain of Automatic Music Transcription and the underlying tasks. We explore
the state of the art and propose an implementation for a subset of the presented methods.
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1 Background
The focus of this project is music information retrieval from music audio signals. In this section we go through
the main problems in the discipline of Automatic Music Transcription, we study characteristics of musical
elements, human perception of music, and basic notions of modern music theory. We also review the main
characteristics of a sound wave as well as analytic tools for processing digital audio signals. Furthermore, we
establish the bridge between music theory and physical properties of audio signals.

1.1 Automatic Music Transcription
AMT is the process of converting an acoustic musical signal into some form of musical notation.
(Benetos et al. 2013)

1.1.1 History and community

The interest in the task of AMT has started in the late 20th century, with researchers borrowing and adapting
concepts from the well-established domain of speech-processing. Major strides have been made in the 21st

century, particularly since the creation of the International Society for Music Information Retrieval (ISMIR)
in 2000. Which have connected the community and provided a platform for sharing and learning Music
Information Retrieval (MIR) concepts worldwide. (Müller 2015)
furthermore, the Music Information Retrieval Evaluation eXchange (MIREX) is an annual evaluation
compaign for MIR algorithms. Since it started in 2005, MIREX has served as a benchmark for evaluating
novelty algorithms and helped advance MIR Research.

1.1.2 Motivation

MIR and AMT can be of great interest for different demographics. First, most musicians stand to benefit
from reliable transcription algorithms as it can facilitate their tasks in difficult cases or for the least accelerate
the process.
Moreover, in many music genres such as Jazz, musical notation is rarely used, therefore the exchange formats
are almost exclusively recordings of performances. AMT would play a role in democratizing no-score music
for new learners and provide an easier canonical format for exchanging music.
Another use of MIR is score-following software development that include a cursor that follows real-time
playing indicating the correct and incorrect notes played helping pupils practice and progress on their own
more efficiently, making the task of music learning less painful.
Furthermore, MIR allows performing musicological analysis directly on recordings, gaining access to much
larger databases compared to anotated music, which can also be applied for various tasks such as music
recognition or melody recognition.

1.1.3 Underlying tasks

Automatic Music Transcription is divided into several subtasks where each represents a research topic that
fall within the scope of Musical Information Retrieval.
The largest topic of MIR is tonal analysis, which is based on analysing spectral features of audio signals,
and subsequently estimating pitch, melody and harmony. Despite the large interest in this topic and various
techniques applied, this task remains the core problem in AMT, Exploration of main pitch analysis techniques
is the first part of this project.
Another main AMT task is temporal segmentation, which relates consequently to rythme extraction and
tempo detection in melodic sounds. (Benetos et al. 2013) This task pertains pertains to spectral features as
well as signal energy. We expore this topic in the second part of this project.
Several more tasks are needed to fully transcribe a musical piece, including: loudness estimation, instrument
recognition, rhythm detection, scale detection and harmony analysis. In the scope of this project, we limit our
study to pitch analysis and temporal segmentation.
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1.2 Physical definition of acoustic waves
Sound is generated by vibrating objects, these vibrations cause oscillations of molecules in the medium. The
varying pressure propagates through the medium as a wave, the pressure is therefore the solution of the wave
equation in time and space, also known as the acoustic wave equation. (Feynman 1965)

∆p = 1
c2
∂2p

∂t2

where p is the accoustic pressure function of time and space and c is the speed of sound propagation. The
wave equation can be solved analytically with the separation of variables method, resulting in a sinusoidal
harmonic solutions.
In audio signal processing, we are interested in the pressure at the receptor’s position (listener or microphone),
hence the pressure as a function of time. An audio signal is therefore defined as the deviation of pressure
from the average pressure of the medium at the receptor’s position.
The pressure function being harmonic, the sound signal is of the form

x̃(t) =
∞∑
h=0

Ah cos(2πhf0t+ ϕh)

where
• f0 is called the fundamental frequency of the signal,
• h is the harmonic number,
• Ah is the amplitude of the hth harmonic,
• ϕh is the phase of the hth harmonic.

In many works this formula appears in terms of the angular frequency ω = 2πf , we denote as well fh = hf0
for h ≥ 1.
As harmonics represent proper multiples of the fundamental frequency, h = 0 is excluded from the sum

x̃(t) = a0 +
∞∑
h=1

Ah cos(2πhf0t+ ϕh)

with a0 = A0 cos(ϕ0).

1.3 Perception of sound and music
The human auditory system is capable of distinguishing intensities and frequencies of sound waves as well
as temporal features. The inner ear is extremely sensitive to sound wave features, the brain allows further
analysis of these features.
Music theory defines and studies perceived features of music signals. These features are based on the signal’s
intensity, frequency, and time patterns.
In music theory, a note is a musical symbol that represents the smallest musical object. The note’s attributes
define the pitch of the sound, its relative duration and its relative intensity.

1.3.1 Fundamental frequency and pitch

Sound signals are periodic, therefore by definition there exists a T > 0 such as

∀t, x̃(t) = x̃(t+ T )

which follows that there exists an infinite set of values of T > 0 that verify this property, indeed ∀n ∈ N, T ′ =
nT, x̃(t) = x̃(t+T ′). We define the period of a signal as the smallest positive value of T for which the property
holds. The fundamental frequency f0 is defined formally as the reciprocal of the period. This definition
holds for any periodic signal, regardless of its form.
In the case of sound wave, the perception of the fundamental frequency is referred to as the pitch. Pitch is the
defined as the tonal height of a sound, it is closely related to the fundamental frequency however remaining a
relative musical concept unlike the f0 of a signal that is an absolute mathematical value. In fact, the relation
between pitch and f0 is neither bijective nor invariant.
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In music theory, pitch is defined on a discrete space unlike the continuous frequency space. Moreover, human
perception of frequency is logarithmic hence obtaining the next pitch corresponds to the multiplication of the
frequency by a certain value r.
Finally, the frequency of the reference pitch A4 is widely accepted today as 440Hz while in the baroque era it
was around 415Hz and 440Hz was the frequency corresponding to A\ pitch. Even in modern day, variations
of the pitch frequency exist in different regions and even different orchestras!

1.3.2 Perception of intensity

Sound intensity is defined physically as the power carried by sound waves per unit area, whereas sound
pressure is the local pressure deviation from the ambient atmospheric pressure caused by a sound wave.
Human perception of intensity is directly sensitive to sound pressure, it is measured in terms of sound pressure
level (SPL) which is a logarithmic measure of sound pressure P relative to the atmospheric pressure P0
measured in decibels dB.

SPL = 20 log10

(
P

P0

)
dB

Nevertheless, sensitivity to sound intensity is variable across different frequencies. The subjective perception
of sound pressure is defined by a sound’s loudness which is a function of both SPL and frequency ranging
from quiet to loud.

In music theory, loudness is defined by a piece’s dynamics. Dynamics are indicators of a part’s loudness
relative to other parts and/or instruments. Dynamics markings are expressed with the italian keywords forte
f (loud) and piano p (soft). Subtle degrees of loudness can be expressed by the prefixes mezzo- or più, for
example mp stands for mezzo-piano (moderately soft) and più p (softer), or by consecutive letters such as
fortissimo ff (very loud) or more letters if needed.
Music dynamics also allow expressing gradual changes in loudness, indicated as symbols or italian keywords
(crescendo and diminuendo).

1.4 Audio signal processing
1.4.1 Discrete-time signals

The domain of audio signal processing deals with recorded digital/analog signals, which are discrete-time
signals. The Nyquist-Shannon sampling theorem is the fundamental bridge between continuous-time
and discrete-time signals. It establishes a sufficient condition for a sample rate that permits a discrete sequence
of samples to capture all the information from a continuous-time signal. (Wikipedia 2020)
The sample rate fs of a discrete-time signal is defined as the number of samples per second, its inverse is the
time step between samples Ts.
We denote, conformely to litterature a discrete signal time frame as x[n] = x(tn) where tn = n · Ts = n

fs
.
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1.4.2 Discrete Fourier Transform (DFT)

The discrete Fourier transform of N samples, with a sample rate of fs can be obtained from its continuous
definition.

X(f) =
tN∫
0

x(t) · e−2πjftdt (1)

= lim
fs→∞

N−1∑
n=0

x(tn) · e−2πjftn (2)

= lim
fs→∞

N−1∑
n=0

x[n] · e−2πjf n
fs︸ ︷︷ ︸

X[f ]

(3)

= lim
fs→∞

X[f ] (4)

The DFT of x[n] is given for all frequency bins k = 0, . . . ,K

X[k] =
N−1∑
n=0

x[n] · e−2πjk n
fs
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2 Pitch analysis
2.1 Introduction
Pitch analysis is the task of estimating the fundamental frequency of a periodic signal that is the inverse of
the period which is defined as “the smallest positive member of the infinite set of time shifts leaving the signal
invariant” (Cheveigné and Kawahara 2002). As music signal frequencies vary through time, the pitch analysis
is usually performed on a short time frame (window) allowing to express the obtained pitch as a function of
time, we will consider henceforth the analysis on a single frame.
Furthermore, the physical model we have considered for the signal formula is based on physical hypotheses. In
fact, we considered a signal formed by a perfectly harmonic instrument travelling in a perfectly undisturbed
homogenuous medium with no other iterfering waves. Since such conditions are almost never met, we base
our analysis on imperfect conditions. Indeed, the recorded signal represents the pressure function at the
receptors position. Consequently, the recorder captures the pressure at its position from all surrounding
stimuli, recording surrounding noise, resonance effects, and the reflected wave with a certain lag. As a result,
we express the observed signal as the sum of the harmonic signal x̃ and the residual z. (Yeh 2008)

x(t) = x̃(t) + z(t)

Before we move on, let’s consider the harmonicity of a sound. In the case of perfectly harmonic instrument
the frequency of harmonic partials is expressed as a proper multiple of the fundamental frequency fh = hf0.
However, most musical instruments are not perfectly harmonic, for example the hth harmonic frequency of a
vibrating string is given as

fh = hf0
√

1 +Bh2 where B = π3Ed4

64l2T
where B is the inharmonicity factor of the string, E is Young’s modulus, d is the diameter of the string, l is
its length and T is its tension. We refer to such signals as quasi-periodic. Pitch analysis therefore has to
take into account the inharmonicity of a signal in the process of estimating its fundamental frequencies in
order to prevent cases of false negatives (missed pitches). [source needed]
Pitch analysis deals with both monophonic and polyphonic signals, a monophonic signal is a signal produced
by a single harmonic source whereas polyphonic signals have multiple sources, in the case of the latter the task
is significantly harder. Nevertheless, pitch estimation methods for both single and multiple sourced harmonics
can be classified into two categories: methods that estimate the period in the signal time domain and methods
that estimate the f0 from the harmonic patterns in the signal spectrum.

2.2 Single pitch
Single pitch estimation is based on finding the fundamental frequency of a monophonic sound. The quasi-
periodic monophonic signal x̃ is expressed as

x̃(t) =
∞∑
h=1

Ah cos(2πf0t+ ϕh)

For practical reasons, a finite number of harmonic partials H is used to approximate the signal.

x̃(t) ≈
H∑
h=1

Ah cos(2πf0t+ ϕh)

The estimation of f0 can be approached in two different ways: by analysing the time function x(t) or by
analysing the signal spectrum X(f).

2.2.1 Time domain

Time domain methods analyse the repetitiveness of the wave by comparing the signal with a delayed version of
itself. This comparison is achieved using special functions that represent the pattern similarity or dissimilarity
as a function of the time lag τ .
We will study and compare the functions that appear the most in litterature.
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2.2.1.1 Autocorrelation function
The autocorrelation function (ACF) comes immediately to mind. By definition, autocorrelation is the similarity
function between observations. Given a discrete signal of N samples, the autocorrelation function is defined as

r[τ ] =
N−τ∑
t=1

x[t]x[t+ τ ]

The value is of the ACF is at a local maximum when the lag is equal to the signal’s period or its multiples.
Autocorrelation is sensitive to structures in signals, making it useful to applications of speech detection.
However, in the case of music signals, resonance structures appear hence the need for a better adapted
function.

2.2.1.2 Difference function
The Average Magnitude Difference Function (AMDF) (Ross et al. 1974) is the average unsigned difference
between x(t) and x(t+ τ).

dAM[τ ] = 1
N

N−τ∑
t=1
|x[t]− x[t+ τ ]|

The difference function is at its local minima for lags equal to proper multiples of the signals period. AMDF
is more adapted than autocorrelation for applications in music processing.

2.2.1.3 Squared difference function
The Squared Difference Function (SDF) is very similar to AMDF, it accentuates however the dips at the
signals period therefore indicate local extrema more clearly.

d[τ ] =
N−τ∑
t=1

(x[t]− x[t+ τ ])2

YIN algorithm (Cheveigné and Kawahara 2002) employs the SDF as an auxiliary function for calculating
the cumulative mean normalized difference function that divides SDF by its average over shorter lags
and starts at 1 rather than 0 (in the case of SDF and AMDF); it tends to stay large at short lags and drops
when SQD falls under its average.

dYIN[τ ] =

1 if τ = 0

d[τ ]/ 1
τ

τ∑
t=0

d[t] otherwise

from muallef.io import AudioLoader
from muallef.plot import diff_functions as df

cello = AudioLoader('samples/instrument_single/cello_csharp2.wav')
cello.cut(start=2, stop=2.06)
df.time_domain_plots(cello.signal, cello.sampleRate, pitch=69.3)
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2.2.2 Spectral domain

Fourier transform is the most adapted mathematical tool for analysing periodicity in functions. The transform
produced a complex function of frequency, where the magnitude of the transform attains its local maxima at
the signal’s frequency and its harmonics.
Spectral domain methods analyse the magnitude and/or the phase of the fourier transform of the signal,
which generally gives better results. Nevertheless, similar comparison functions are employed in order to get
the fundamental frequency.

2.2.2.1 Spectral autocorrelation
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Autocorrelation measures repititive patterns, since harmonics appear at almost fixed frequency intervals, ACF
allows to identify harmonic partials. (Lahat, Niederjohn, and Krubsack 1987) The autocorrelation is applied
to the spectrum of the signal, that is the magnitude of the fourier transform. The function attains its local
maxima at frequency shifts that are multiples of f0, otherwise the function is attenuated since the partial
peaks are not well aligned.
For a spectrum S[f ] = |X[f ]| with K spectral bins

R[f ] =
K−f∑
k=1

S[k]S[k + f ]

2.2.2.2 Harmonic sum
A frequency histogram represents the number of occurrences of each frequency, it does not however reflect the
amplitudes of the harmonics of frequencies. Schroeder proposes to weight the contribution of each harmonic
to the histogram with a monotonically increasing function of its amplitude, this is done using log compression
where spectral harmonic bins are compressed with a logarithm. Finally, Schroeder proposed two functions of
frequency that sum the compressed weighted histogram. (Schroeder 1968)

• Harmonic sum:

Σ(f) =
M∑
m=1

20 log10 S(nf)

• Harmonic product:

Σ′(f) = 20 log10

M∑
m=1

S(nf)

The sum inside the logarithm in the harmonic product can be viewed as a product because of the properties
of the logarithm function.
oboe = AudioLoader('samples/instrument_single/oboe_a4.wav')
oboe.cut(start=0.5)
df.spectral_plots(oboe.signal[:4096], oboe.sampleRate, pitch=440)
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2.2.2.3 Spectral YIN
The spectral YIN method (Brossier 2006) is an optimized version of YIN’s algorithm computed in the frequency
domain. The square difference function is defined over spectral magnitudes

d̂(τ) = 2
N

N
2 +1∑
k=0

∣∣∣(−e2πjkτ/N
)
X[k]

∣∣∣2
2.2.3 Application Example

I have recorded myself playing Vittorio Monti’s violin piece “Czardas” which is relatively complex musically
since it features tonal glissando (continuous slides) and is grace notes (short time notes).
We test pitch estimation using the YIN method in the time domain as well as the spectral domain.
from muallef.pitch import MonoPitch
from muallef.util.units import Hz_to_MIDI

czardas = AudioLoader('samples/monophonic/czardas_cut.wav')

yin = MonoPitch(czardas.signal, czardas.sampleRate, method='yin')
yin_f0 = yin()
yin_conf = yin.get_confidence(normalize=True)
yinfft = MonoPitch(czardas.signal, czardas.sampleRate, method='yinfft')
yinfft_f0 = yinfft()
yinfft_conf = yinfft.get_confidence(normalize=True)
time = czardas.time(len(yinfft_f0))

fig, ax = plt.subplots(2, 1, sharex=True)
fig.set_figheight(6)
_ = fig.suptitle("Single Pitch Estimation using YIN method", fontsize=16)
_ = ax[0].set_title("$f_0$ of Monti's \"Czardas\" on violin")
_ = ax[0].scatter(time, yin_f0, c='blue', s=10*yin_conf, label='YIN')
_ = ax[0].scatter(time, yinfft_f0, c='red', s=10*yinfft_conf, label='Spectral YIN')
_ = ax[0].set_ylim(0, 600)
_ = ax[0].set_ylabel('Estimated $f_0$ (Hz)')
_ = ax[0].legend()
_ = ax[1].set_title("Pitch of Monti's \"Czardas\" on violin")
pitch = np.round(Hz_to_MIDI(yinfft_f0))
_ = ax[1].scatter(time, pitch, s=10*yinfft_conf)
_ = ax[1].set_ylim(0, 100)
_ = ax[1].set_ylabel('Estimated pitch (MIDI)')
_ = ax[1].set_xlabel('Time (s)')
plt.show()
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As expected, f0 values were successfuly detected including fuzzy glissando pitches and grace notes.

2.3 Multiple pitch
In polyphonic music analysis, we are interested in detecting the fundamental frequences for concurrent signals,
the signals can be produced by several instruments simultanuously.
There are generally two approaches to this problem: iterative estimation and joint estimation. In iterative
estimation, the most prominent f0 is extracted at each iteration until no additional f0 can be estimated.
Generally, iterative estimation models tend to accumulate errors at each iteration step, they are however
computationally cheap. Whereas joint estimation methods evaluation f0 combinations which leads to more
accurate estimates, however the computational cost is significantly increased.(Benetos et al. 2013)
We establish the formalism of the task analogously to a single pitch harmonic signal. A multi-pitch harmonic
signal x̃(t) can be expressed as the sum of M harmonic signals.

x̃(t) =
M∑
m=1

x̃m(t)

where x̃m(t) is a harmonic monophonic signal similar to signals we’ve seen so far. It follows that

x(t) ≈
M∑
m=1

Hm∑
h=1

Am,h cos(2πhf0,mt+ ϕm,h) + z(t)
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2.3.1 Harmonic Amplitudes Sum

A. Klapuri (2006) proposes a robust pipeline for estimating fundamental frequencies in polyphonic music
signals. The method looks for f0 that maximizes a frequency strength over candidate frequencies in a whitened
spectrum.

1. Spectral whitening: different sources can have different timbral information in the signal spectrum.
In order to detect analyse the frequencies of the different sources, Klapuri proposes suppressing the
timbral information prior to detecting dominant frequencies in the spectrum. This process is done by a
sequence of transformations:

• Apply bandpass filter to the spectrum X(f) to obtain center frequencies cb where b is the subband
index of the filtered spectrum. Each subband has a triangular power response Hb(f) such that
supp (Hb(k)) = [cb−1, cb+1].

• Calculate standard deviations σb within subbands

σb =

 1
K

∑
f

Hb(f) |X(f)|2
1/2

where K is the number of frequency bins of the Fourier transform.
• Calculate compression coefficients γb = σν−1

b where ν is the whitening parameter, the proposed
value is ν = 0.33.

• Interpolate γ(f) for all frequency bins f from γb.
• Finally calculate the whitened spectrum Y (f) by weighting the input spectrum by the obtained

compression coefficients Y (f) = γ(f)X(f).
2. Salience function: strength of f0 candidates is evaluated using a salience function s that calculates

the weighted sum of harmonic partials’ amplitudes, similarly to Schroeder’s function (1968).

s(τ) =
H∑
h=1

g(τ, h) |Y (hfτ )|

where fτ = fs/τ is the f0 candidate corresponding to the period τ and g(τ, h) is the weight of the h
partial of period τ .

3. Finally the frequencies are estimated iteratively or jointly by determining f0 = argmaxf s(f). In iterative
evaluation, the found f0 is removed from the residual spectrum and the process is repeated until the
spectrum is flat.

2.3.1.1 Application Example
We test Klapuri’s pipeline on Beethoven’s infamous piano piece “Für Elise”.
from muallef.pitch import MultiPitch
from muallef.util.units import Hz_to_MIDI

fur_elise = AudioLoader('samples/polyphonic/furElise.wav')
fur_elise.cut(stop=5)

klapuri = MultiPitch(fur_elise.signal, fur_elise.sampleRate, method='klapuri')
pitch = Hz_to_MIDI(klapuri())
time = fur_elise.time(pitch.shape[1])

fig, ax = plt.subplots()
fig.set_figheight(8)
_ = fig.suptitle("Multi-pitch estimation using Klapuri's iterative method", fontsize=16)
_ = ax.set_title("Piano roll of Beethoven's \"Für Elise\"")
for m in range(pitch.shape[0]):

_ = ax.scatter(time, np.round(pitch[m]), s=5)
_ = ax.set_xlabel('Time (s)')
_ = ax.set_ylabel('Estimated Pitch (MIDI)')
_ = ax.set_ylim(30, 80)
plt.show()
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Piano roll of Beethoven’s ”Für Elise”

Multi-pitch estimation using Klapuri’s iterative method

The resulting piano-roll shows a generally decent representation of the piece as the percentage of false positives
remains relatively low.

2.3.2 Spectral factorisation

Non-negative Matrix Factorisation (NMF) is a well-established technique applied to several problems, in
(Smaragdis and Brown 2003) a method is proposed for applying NMF to the signal spectrum.

V ≈W H
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The method consists of factorising a non-negative matrix V ∈ RK×N+ into the product of two non-negative
matrices W ∈ RK×R+ and H ∈ RR×N+ where R is the factorisation rank with R << K, given N time frames
and K spectral bins. The matrix W is the template matrix that extracts the features of X into R classes
referred to as templates. The matrix H is the activation matrix which represents the activation time of
each template.
In the application of over music signal spectrums, V = X> where X ∈ RN×K+ is the spectrogram of the
signal which is the magnitude of the STFT of the signal. The factorisation templates correspond to pitch
classes, where in the case of most instruments or music ensembles is less than R = 100. The template matrix
W corresponds to spectral bases for each pitch component and the activation matrix H represents pitch
activity across time.

The problem is formulated as a non-convex optimisation problem

(W ,H) = argmin
W ,H>0

‖V −W H‖

The implemented cost function C = ‖V −W H‖ is the euclidean norm L2. The matrices V and H
are decomposed into N column vectors, V = (v1, . . . , vN ) and H = (h1, . . . , hN ), which implies ∀i ∈
{1, . . . , N} , vi = Whi. By imposing the orthogonality constraint HH> = I, we obtain the K-means
clustering property. The values of W and H can be initialized randomly and are therefore learned iteratively.
Reinforcing a sparsity constraint was proposed in (Cont 2006) for spectral factorisation since pitch templates
correspond to discrete frequency values. Moreover, a subset of pitch templates are activated simultanuously
in a musical piece, especially in the case of a piano piece.
Finally, single pitch estimation is performed on rows of H.
Unfortunally, our implementation of this algorithm did not give successful results, we use the API provided in
for testing (Müller 2015).
from muallef.plot.nmf import plot_matrix, plot_NMF_factors
from muallef.pitch.nmf import NMF

import numpy as np
import matplotlib.pyplot as plt

# use stft from scipy instead of librosa
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# from librosa import stft
from scipy.signal import stft as sp_stft
def stft(x, n_fft=2048, hop_length=None):

noverlap = n_fft // 2 if hop_length is None else n_fft - hop_length
return sp_stft(x, nperseg=n_fft, noverlap=noverlap)[2]

fs = fur_elise.sampleRate
x = fur_elise.signal
N_fft = 2048
H_fft = 1024

X = stft(x, n_fft=N_fft, hop_length=H_fft)
V = np.log(1 + np.abs(X))
freq_max = 2000

# plot input spectrogram
_ = plot_matrix(V, Fs=fs/H_fft, Fs_F=N_fft/fs, figsize=(8, 5))
_ = plt.ylim([0, freq_max])
plt.show()
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K = V.shape[0]
N = V.shape[1]
R = 30

# Initialize and plot random matrices W, H
W_init = np.random.rand(K,R)
H_init = np.random.rand(R,N)
plot_NMF_factors(W_init, H_init, W_init.dot(H_init), fs, N_fft, H_fft, freq_max)

# Calculate and plot NMF decomposition
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W, H, V_approx, V_approx_err, H_W_error = NMF(V, R, W=W_init, H=H_init, L=200, norm=True)
plot_NMF_factors(W, H, W.dot(H), fs, N_fft, H_fft, freq_max)
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print(f"V error approximation = {V_approx_err}")

V error approximation = 0.012144624640902175
The obtained V matrix is close to the input spectrogram, the matrices are all sparse as expected. Nevertheless,
the matrices are fuzzy therefore pitch templates and their activations are not clear. The NMF factorisation as
is, might not render better results than Klapuri’s. In fact most of pitch templates correspond to multiple
note mixtures, the results can be enhanced by initializing pitch-informed constraints where W is initialized to
MIDI pitch classes. It can however be very useful method for separating different sound sources.
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3 Temporal segmentation
3.1 Introduction
Temporal segmentation is the task of finding time boundaries of audio objects, in the case of music signals the
audio objects in question are the musical notes.
A musical note’s onset is defined as the time it starts, and its ending time is the offset.

Figure 1: IEEE transactions on speech and audio processing, vol. 13, no. 5, september 2005

The signal form varies according to instruments. The onset profile in the image above corresponds to an
instrument producing sudden energy bursts such as a pinched-chord instrument (piano, guitar, etc), or a
percussive instrument, unlike bowed-chord instruments and wind instruments that do no exhibit such energy
bursts. In both cases, the spectral flux, changes in energy, and/or harmonic distribution are analysed in order
to estimate onset times.
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Figure 2: (left) a violin onset profile (right) a piano onset profile

The general onset estimation model is a three-step pipeline (Brossier 2006)
1. Computing an Onset Detection Function (ODF) that characterizes change in energy and/or

harmonic content in a music signal. The change is measured in the time domain, frequency domain,
phase domain, or complex domain for analysing onsets of sounds of different natures.

2. Calculate a smooth threshold function as ODFs tend to be sensitive to the slightest changes, therefore
providing a threshold for viable onset candidates.

3. Peak-picking local maxima of the ODF that are greater than the calculated threshold.

3.2 Onset Detection Function (ODF)
We present a few functions that analyse different features of a musical sound that correspond to subsets of
musical sources.

3.2.1 High Frequency Content (HFC)

The proposed function (Masri and Bateman 1996) favours wide-band energy bursts over changes in amplitude
modulation, and accords a stronger weight to high frequency spectral bins.

DHFC[n] =
N∑
k=1

k · ‖X[n, k]‖2

The function emphasises high frequency energy bursts, which makes it more adapted to percussive onsets
than than bowed-strings or wind instruments. (Brossier 2006)

3.2.2 Phase Deviation

A different approach proposed by (Bello and Sandler 2003), where the function evaluates phase difference that
can help identify tonal onsets as well as percussive onsets.

DΦ[n] =
N∑
k=0
|ϕ̂[n, k]|

where
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• princarg(θ) = π + ((θ + π)mod(−2π))
• ϕ(t, f) = arg(X(t, f))
• ϕ̂(t, f) = princarg

(
∂2ϕ
∂t2 (t, f)

)
The phase deviation function can result in false positives as phase changes occur in noisy signals.

3.2.3 Complex Distance

Another ODF is presented in (Duxbury et al. 2003) that qualifies changes in both magnitude and phase in
order to detect percussing and tonal onsets.

DC[n] =
N∑
k=0

∥∥∥X̂[n, k]−X[n, k]
∥∥∥2

where X̂[n, k] = |X[n, k]| · ejϕ̂[n,k]

The presented function combines spectral difference and phase-based approaches, by borrowing the phase
deviation function from (Bello and Sandler 2003)

3.3 Thresholding & Peak-picking
Since Onset Detection Functions are usually sensitive to the slightest perturbations, false positives belong to
a subset of the local maxima of the ODF. In order to filter such values, a smoothed version of the ODF can
serve as threshold for eliminating insignificant peaks.
A windowed moving average is a good threshold function, it is defined as the convolution product of the
ODF with the window function. In our implementation we have used a Hann window as it limits the aliasing
phenomenon in spectras.

3.4 Results
We apply our onset detection pipeline to the same audio sample of Beethoven’s “Für Elise”.
from muallef.onset import Onset

fur_elise.cut(stop=5)
fs = fur_elise.sampleRate
x = fur_elise.signal
t = fur_elise.time()

onset = Onset(x, fs, method='complex')
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onsets = onset()

fig, ax = plt.subplots(2, 1, sharex=True)
fig.set_figheight(6)
_ = fig.suptitle("Onset detection of Beethoven's \"Für Elise\"", fontsize=16)
_ = ax[0].set_title("Segmented time signal")
_ = ax[0].plot(t, x)
for on in onsets:

_ = ax[0].axvline(x=on, color='red')
_ = ax[1].set_title("Complex difference ODF")
_ = ax[1].plot(onset.onsetTime, onset.onsetFunction)
_ = ax[1].set_xlabel('Time (s)')
plt.show()
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4 Conclusion
Great strides have been made in the field of Music Information Retrieval pertaining to Automatic Music
Transcription, resulting in satisfactory results for certain underlying tasks, namely onset detection and single
pitch estimation. Nevertheless, most AMT problems remain open as researchers worldwide study and apply
new concepts everyday.
In the scope of this project, we have explored well-established concepts of onset detection and single pitch
estimation, and succeeded in obtaining satisfactory results. We have as well explored two different approaches
of multi-pitch estimation and obtained relatively coherent results with Klapuri’s method, but unfortunally
failed in applying Non-Negative Factorisation as we hoped.
As this is our second attempt in approaching AMT, we have been able to study closely core concepts of AMT,
and deeply explore the core difficulty of AMT systems that is Multi-pitch Estimation. As research has lead us
to studying several methods and approaches to this problem, we had to restrict the study to two algorithms
that are robust, mathematically sound and appreciated by the MIR community.
I have held interest for this subject for quite some time, partly because I am a violinist myself but also because
of my fondness of the employed mathematical principles. Most importantly, this project requires application of
various mathematical notions as well as computer science skills hence serving as a demonstration of acquired
knowledge throughout the Masters program. This open problem is more suited to a PhD thesis subject or as
a full-time focus research, we have attempted to do as much as we could to accomplish with very little time.
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